Application of the Acoustic Emission Technique for Studying Kinetics of Corrosion Processes in the ZK60 Magnesium Alloy

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Russian Journal of Non-Ferrous Metals Pub Date : 2025-03-13 DOI:10.1134/S1067821224600923
E. D. Merson, V. A. Poluyanov, P. N. Myagkikh, D. L. Merson
{"title":"Application of the Acoustic Emission Technique for Studying Kinetics of Corrosion Processes in the ZK60 Magnesium Alloy","authors":"E. D. Merson,&nbsp;V. A. Poluyanov,&nbsp;P. N. Myagkikh,&nbsp;D. L. Merson","doi":"10.1134/S1067821224600923","DOIUrl":null,"url":null,"abstract":"<p>Low corrosion resistance of magnesium alloys is a challenging problem that hinders their wide implementation in industry and medicine. In this regard, the study of the mechanisms and patterns of corrosion processes in magnesium and its alloys, including the analysis of the kinetics of these processes, is an urgent task. However, the set of methods available for studying the kinetics of corrosion with sufficient time resolution is very limited. Several studies have been published that demonstrated the high sensitivity of the acoustic emission (AE) method to corrosion processes occurring on the surface of magnesium alloys. Although these studies suggested that AE is associated with the release of hydrogen bubbles accompanying corrosion, no direct relationship has yet been established between the amount of hydrogen released and the AE characteristics. The present study aims at filling this gap. To conduct the study, a special setup with a corrosion cell was developed that allows monitoring changes in the volume of hydrogen released from the corroding surface of the sample, concurrently with recording AE signals and changes in the open-circuit potential (OCP) accompanying the corrosion process. Using this technique, the corrosion of ZK60 alloy in a 0.9% NaCl solution was examined. It was found that intense AE accompanied the corrosion process of this alloy from the beginning to the end of the test. A correlation was found between the AE characteristics, the volume of released hydrogen, and the OCP values at various intervals of the test. In particular, a linear relationship was discovered between the number of AE signals and the volume of hydrogen released during the corrosion process. The sensitivity of the method based on AE registration to the released hydrogen volume is shown to be several orders of magnitude higher than that of the conventional method of collecting hydrogen using a burette.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"65 3","pages":"142 - 150"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821224600923","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Low corrosion resistance of magnesium alloys is a challenging problem that hinders their wide implementation in industry and medicine. In this regard, the study of the mechanisms and patterns of corrosion processes in magnesium and its alloys, including the analysis of the kinetics of these processes, is an urgent task. However, the set of methods available for studying the kinetics of corrosion with sufficient time resolution is very limited. Several studies have been published that demonstrated the high sensitivity of the acoustic emission (AE) method to corrosion processes occurring on the surface of magnesium alloys. Although these studies suggested that AE is associated with the release of hydrogen bubbles accompanying corrosion, no direct relationship has yet been established between the amount of hydrogen released and the AE characteristics. The present study aims at filling this gap. To conduct the study, a special setup with a corrosion cell was developed that allows monitoring changes in the volume of hydrogen released from the corroding surface of the sample, concurrently with recording AE signals and changes in the open-circuit potential (OCP) accompanying the corrosion process. Using this technique, the corrosion of ZK60 alloy in a 0.9% NaCl solution was examined. It was found that intense AE accompanied the corrosion process of this alloy from the beginning to the end of the test. A correlation was found between the AE characteristics, the volume of released hydrogen, and the OCP values at various intervals of the test. In particular, a linear relationship was discovered between the number of AE signals and the volume of hydrogen released during the corrosion process. The sensitivity of the method based on AE registration to the released hydrogen volume is shown to be several orders of magnitude higher than that of the conventional method of collecting hydrogen using a burette.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
期刊最新文献
Investigation of the Nature of Pitting Corrosion of Gold Coins Research of the Influence Friction Stir Welding on the Mechanical Properties of Welded Joints with Aluminum and Copper Alloys Application of the Acoustic Emission Technique for Studying Kinetics of Corrosion Processes in the ZK60 Magnesium Alloy Nanoindentation and Nanoscratch Testing for the Mechanical Characterization of Stealth Thin Film Coatings The Relationship between Temperature and Reinforcement Amount in the Wear Performance of TiC Reinforced AMCs Produced by Mechanical Alloying Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1