V. G. Bogush, L. I. Davydova, S. E. Cheperegin, K. V. Sidoruk, S. V. Krasheninnikov, M. A. Klinskaya, E. V. Sytina, V. G. Debabov
{"title":"An Increase in the Adhesive Ability of Recombinant Spidroins with the Recombinant Adhesive Mussel Foot Protein Mfp3","authors":"V. G. Bogush, L. I. Davydova, S. E. Cheperegin, K. V. Sidoruk, S. V. Krasheninnikov, M. A. Klinskaya, E. V. Sytina, V. G. Debabov","doi":"10.1134/S000368382470025X","DOIUrl":null,"url":null,"abstract":"<p> Previously, it was demonstrated that recombinant spidroins rS1/9 and rS2/12 are able to glue various inorganic and organic materials. It is known that mussel foot proteins have unique adhesive properties associated with a high content of L-3,4-dihydroxyphenylalanine (DOPA), which is formed due to modification of tyrosine residues by the enzyme tyrosinase. We constructed a hybrid protein, which contains recombinant mussel foot protein 3 (Mfp3), as well as the recombinant tyrosinase used for modifying the tyrosine residues in DOPA in all recombinant proteins (rS1/9, rS2/12, and Mfp3 in the composition of the hybrid protein). Such modification led to an enhancement of the adhesive properties of these proteins, while the combination of modified spidroins with Mfp3-DOPA significantly increased their adhesive ability, which was demonstrated in the experiments on gluing various materials. The results obtained indicate the high potential of the hybrid protein containing recombinant modified Mfp3 for use alone or as an additive to recombinant spidroins for medical use.</p>","PeriodicalId":466,"journal":{"name":"Applied Biochemistry and Microbiology","volume":"60 9","pages":"1665 - 1673"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S000368382470025X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previously, it was demonstrated that recombinant spidroins rS1/9 and rS2/12 are able to glue various inorganic and organic materials. It is known that mussel foot proteins have unique adhesive properties associated with a high content of L-3,4-dihydroxyphenylalanine (DOPA), which is formed due to modification of tyrosine residues by the enzyme tyrosinase. We constructed a hybrid protein, which contains recombinant mussel foot protein 3 (Mfp3), as well as the recombinant tyrosinase used for modifying the tyrosine residues in DOPA in all recombinant proteins (rS1/9, rS2/12, and Mfp3 in the composition of the hybrid protein). Such modification led to an enhancement of the adhesive properties of these proteins, while the combination of modified spidroins with Mfp3-DOPA significantly increased their adhesive ability, which was demonstrated in the experiments on gluing various materials. The results obtained indicate the high potential of the hybrid protein containing recombinant modified Mfp3 for use alone or as an additive to recombinant spidroins for medical use.
期刊介绍:
Applied Biochemistry and Microbiology is an international peer reviewed journal that publishes original articles on biochemistry and microbiology that have or may have practical applications. The studies include: enzymes and mechanisms of enzymatic reactions, biosynthesis of low and high molecular physiologically active compounds; the studies of their structure and properties; biogenesis and pathways of their regulation; metabolism of producers of biologically active compounds, biocatalysis in organic synthesis, applied genetics of microorganisms, applied enzymology; protein and metabolic engineering, biochemical bases of phytoimmunity, applied aspects of biochemical and immunochemical analysis; biodegradation of xenobiotics; biosensors; biomedical research (without clinical studies). Along with experimental works, the journal publishes descriptions of novel research techniques and reviews on selected topics.