Chun-Mei Zhang, Yu-Da Wu, Jian-Rong Zhu, Hong-Wei Li
{"title":"Improving the performance of practical reference-frame-independent quantum key distribution under the afterpulse effect","authors":"Chun-Mei Zhang, Yu-Da Wu, Jian-Rong Zhu, Hong-Wei Li","doi":"10.1007/s11128-025-04707-8","DOIUrl":null,"url":null,"abstract":"<div><p>Reference-frame-independent quantum key distribution (RFI-QKD) can generate secure keys between two remote peers with an unknown and slowly drifted reference frame. As an intrinsic characteristic of single-photon avalanche detectors, the afterpulse effect is often ignored in the simulation of the analytical model, which leads to a large deviation from the data obtained in practical RFI-QKD systems. Therefore, an afterpulse-compatible model should be adopted to fix this deviation. However, the afterpulse-compatible model results in a decline in the performance of RFI-QKD systems. To mitigate the performance decline of RFI-QKD under the afterpulse effect, we apply the advantage distillation (AD) method to enhance the secret key rate and the maximum transmission distance. Simulation results demonstrate that, without changing the optical hardware of RFI-QKD systems, the AD method can substantially improve the performance of RFI-QKD under the afterpulse effect.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04707-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reference-frame-independent quantum key distribution (RFI-QKD) can generate secure keys between two remote peers with an unknown and slowly drifted reference frame. As an intrinsic characteristic of single-photon avalanche detectors, the afterpulse effect is often ignored in the simulation of the analytical model, which leads to a large deviation from the data obtained in practical RFI-QKD systems. Therefore, an afterpulse-compatible model should be adopted to fix this deviation. However, the afterpulse-compatible model results in a decline in the performance of RFI-QKD systems. To mitigate the performance decline of RFI-QKD under the afterpulse effect, we apply the advantage distillation (AD) method to enhance the secret key rate and the maximum transmission distance. Simulation results demonstrate that, without changing the optical hardware of RFI-QKD systems, the AD method can substantially improve the performance of RFI-QKD under the afterpulse effect.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.