Multiple perception contrastive learning for automated ovarian tumor classification in CT images.

IF 2.3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Abdominal Radiology Pub Date : 2025-03-12 DOI:10.1007/s00261-025-04879-y
Lingwei Li, Tongtong Liu, Peng Wang, Lianzheng Su, Lei Wang, Xinmiao Wang, Chidao Chen
{"title":"Multiple perception contrastive learning for automated ovarian tumor classification in CT images.","authors":"Lingwei Li, Tongtong Liu, Peng Wang, Lianzheng Su, Lei Wang, Xinmiao Wang, Chidao Chen","doi":"10.1007/s00261-025-04879-y","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is among the most common malignant tumours in women worldwide, and early identification is essential for enhancing patient survival chances. The development of automated and trustworthy diagnostic techniques is necessary because traditional CT picture processing mostly depends on the subjective assessment of radiologists, which can result in variability. Deep learning approaches in medical image analysis have advanced significantly, particularly showing considerable promise in the automatic categorisation of ovarian tumours. This research presents an automated diagnostic approach for ovarian tumour CT images utilising supervised contrastive learning and a Multiple Perception Encoder (MP Encoder). The approach incorporates T-Pro technology to augment data diversity and simulates semantic perturbations to increase the model's generalisation capability. The incorporation of Multi-Scale Perception Module (MSP Module) and Multi-Attention Module (MA Module) enhances the model's sensitivity to the intricate morphology and subtle characteristics of ovarian tumours, resulting in improved classification accuracy and robustness, ultimately achieving an average classification accuracy of 98.43%. Experimental results indicate the method's exceptional efficacy in ovarian tumour classification, particularly in cases involving tumours with intricate morphology or worse picture quality, thereby markedly enhancing classification accuracy. This advanced deep learning framework proficiently tackles the complexities of ovarian tumour CT image interpretation, offering clinicians enhanced diagnostic support and aiding in the optimisation of early detection and treatment strategies for ovarian cancer.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04879-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer is among the most common malignant tumours in women worldwide, and early identification is essential for enhancing patient survival chances. The development of automated and trustworthy diagnostic techniques is necessary because traditional CT picture processing mostly depends on the subjective assessment of radiologists, which can result in variability. Deep learning approaches in medical image analysis have advanced significantly, particularly showing considerable promise in the automatic categorisation of ovarian tumours. This research presents an automated diagnostic approach for ovarian tumour CT images utilising supervised contrastive learning and a Multiple Perception Encoder (MP Encoder). The approach incorporates T-Pro technology to augment data diversity and simulates semantic perturbations to increase the model's generalisation capability. The incorporation of Multi-Scale Perception Module (MSP Module) and Multi-Attention Module (MA Module) enhances the model's sensitivity to the intricate morphology and subtle characteristics of ovarian tumours, resulting in improved classification accuracy and robustness, ultimately achieving an average classification accuracy of 98.43%. Experimental results indicate the method's exceptional efficacy in ovarian tumour classification, particularly in cases involving tumours with intricate morphology or worse picture quality, thereby markedly enhancing classification accuracy. This advanced deep learning framework proficiently tackles the complexities of ovarian tumour CT image interpretation, offering clinicians enhanced diagnostic support and aiding in the optimisation of early detection and treatment strategies for ovarian cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Abdominal Radiology
Abdominal Radiology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.20
自引率
8.30%
发文量
334
期刊介绍: Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section. Reasons to Publish Your Article in Abdominal Radiology: · Official journal of the Society of Abdominal Radiology (SAR) · Published in Cooperation with: European Society of Gastrointestinal and Abdominal Radiology (ESGAR) European Society of Urogenital Radiology (ESUR) Asian Society of Abdominal Radiology (ASAR) · Efficient handling and Expeditious review · Author feedback is provided in a mentoring style · Global readership · Readers can earn CME credits
期刊最新文献
LI-RADS for diagnosing hepatocellular carcinoma by contrast-enhanced US with SonoVue and Sonazoid-a single center prospective study. Ovarian masses suggested for MRI examination: assessment of deep learning models based on non-contrast-enhanced MRI sequences for predicting malignancy. Percutaneous management of iatrogenic ureteral injuries using a multistep approach: clinical, functional and long-term outcomes. Adolescent endometriosis: clinical insights and imaging considerations. Artificial intelligence for abdominopelvic trauma imaging: trends, gaps, and future directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1