Lingwei Li, Tongtong Liu, Peng Wang, Lianzheng Su, Lei Wang, Xinmiao Wang, Chidao Chen
{"title":"Multiple perception contrastive learning for automated ovarian tumor classification in CT images.","authors":"Lingwei Li, Tongtong Liu, Peng Wang, Lianzheng Su, Lei Wang, Xinmiao Wang, Chidao Chen","doi":"10.1007/s00261-025-04879-y","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is among the most common malignant tumours in women worldwide, and early identification is essential for enhancing patient survival chances. The development of automated and trustworthy diagnostic techniques is necessary because traditional CT picture processing mostly depends on the subjective assessment of radiologists, which can result in variability. Deep learning approaches in medical image analysis have advanced significantly, particularly showing considerable promise in the automatic categorisation of ovarian tumours. This research presents an automated diagnostic approach for ovarian tumour CT images utilising supervised contrastive learning and a Multiple Perception Encoder (MP Encoder). The approach incorporates T-Pro technology to augment data diversity and simulates semantic perturbations to increase the model's generalisation capability. The incorporation of Multi-Scale Perception Module (MSP Module) and Multi-Attention Module (MA Module) enhances the model's sensitivity to the intricate morphology and subtle characteristics of ovarian tumours, resulting in improved classification accuracy and robustness, ultimately achieving an average classification accuracy of 98.43%. Experimental results indicate the method's exceptional efficacy in ovarian tumour classification, particularly in cases involving tumours with intricate morphology or worse picture quality, thereby markedly enhancing classification accuracy. This advanced deep learning framework proficiently tackles the complexities of ovarian tumour CT image interpretation, offering clinicians enhanced diagnostic support and aiding in the optimisation of early detection and treatment strategies for ovarian cancer.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04879-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer is among the most common malignant tumours in women worldwide, and early identification is essential for enhancing patient survival chances. The development of automated and trustworthy diagnostic techniques is necessary because traditional CT picture processing mostly depends on the subjective assessment of radiologists, which can result in variability. Deep learning approaches in medical image analysis have advanced significantly, particularly showing considerable promise in the automatic categorisation of ovarian tumours. This research presents an automated diagnostic approach for ovarian tumour CT images utilising supervised contrastive learning and a Multiple Perception Encoder (MP Encoder). The approach incorporates T-Pro technology to augment data diversity and simulates semantic perturbations to increase the model's generalisation capability. The incorporation of Multi-Scale Perception Module (MSP Module) and Multi-Attention Module (MA Module) enhances the model's sensitivity to the intricate morphology and subtle characteristics of ovarian tumours, resulting in improved classification accuracy and robustness, ultimately achieving an average classification accuracy of 98.43%. Experimental results indicate the method's exceptional efficacy in ovarian tumour classification, particularly in cases involving tumours with intricate morphology or worse picture quality, thereby markedly enhancing classification accuracy. This advanced deep learning framework proficiently tackles the complexities of ovarian tumour CT image interpretation, offering clinicians enhanced diagnostic support and aiding in the optimisation of early detection and treatment strategies for ovarian cancer.
期刊介绍:
Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section.
Reasons to Publish Your Article in Abdominal Radiology:
· Official journal of the Society of Abdominal Radiology (SAR)
· Published in Cooperation with:
European Society of Gastrointestinal and Abdominal Radiology (ESGAR)
European Society of Urogenital Radiology (ESUR)
Asian Society of Abdominal Radiology (ASAR)
· Efficient handling and Expeditious review
· Author feedback is provided in a mentoring style
· Global readership
· Readers can earn CME credits