Maria R Pozo, Yuli W Heinson, Christianne J Chua, Emilia Entcheva
{"title":"Control of cardiac waves in human iPSC-CM syncytia by a Halbach array and magnetic nanoparticles.","authors":"Maria R Pozo, Yuli W Heinson, Christianne J Chua, Emilia Entcheva","doi":"10.1016/j.bpj.2025.03.006","DOIUrl":null,"url":null,"abstract":"<p><p>The Halbach array, originally developed for particle accelerators, is a compact arrangement of permanent magnets that creates well-defined magnetic fields without heating. Here, we demonstrate its use for modulating the speed of electromechanical waves in cardiac syncytia of human stem cell-derived cardiomyocytes. At 40-50 mT magnetic field strength, a cylindrical dipolar Halbach array boosted the conduction velocity, CV, by up to 25% when the magnetic field was co-aligned with the electromechanical wave (but not when perpendicular to it). To observe the effects, a short-term incubation of the cardiac cell constructs with non-targeted magnetic nanoparticles, mNPs, was sufficient. This led to increased CV anisotropy, and effects were most pronounced at slower pacing rates. Instantaneous formation and re-arrangement of elongated mNP clusters upon magnetic field rotation was seen, creating dynamic structural anisotropy that may have contributed to the directional CV effects. This approach may be useful for anti-arrhythmic control of cardiac waves.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.03.006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Halbach array, originally developed for particle accelerators, is a compact arrangement of permanent magnets that creates well-defined magnetic fields without heating. Here, we demonstrate its use for modulating the speed of electromechanical waves in cardiac syncytia of human stem cell-derived cardiomyocytes. At 40-50 mT magnetic field strength, a cylindrical dipolar Halbach array boosted the conduction velocity, CV, by up to 25% when the magnetic field was co-aligned with the electromechanical wave (but not when perpendicular to it). To observe the effects, a short-term incubation of the cardiac cell constructs with non-targeted magnetic nanoparticles, mNPs, was sufficient. This led to increased CV anisotropy, and effects were most pronounced at slower pacing rates. Instantaneous formation and re-arrangement of elongated mNP clusters upon magnetic field rotation was seen, creating dynamic structural anisotropy that may have contributed to the directional CV effects. This approach may be useful for anti-arrhythmic control of cardiac waves.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.