Point mutations of the mitochondrial chaperone TRAP1 affect its functions and pro-neoplastic activity.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2025-03-12 DOI:10.1038/s41419-025-07467-6
Claudio Laquatra, Alessia Magro, Federica Guarra, Matteo Lambrughi, Lavinia Ferrone, Giulio Fracasso, Melissa Bacchin, Martina La Spina, Elisabetta Moroni, Elena Papaleo, Giorgio Colombo, Andrea Rasola
{"title":"Point mutations of the mitochondrial chaperone TRAP1 affect its functions and pro-neoplastic activity.","authors":"Claudio Laquatra, Alessia Magro, Federica Guarra, Matteo Lambrughi, Lavinia Ferrone, Giulio Fracasso, Melissa Bacchin, Martina La Spina, Elisabetta Moroni, Elena Papaleo, Giorgio Colombo, Andrea Rasola","doi":"10.1038/s41419-025-07467-6","DOIUrl":null,"url":null,"abstract":"<p><p>The mitochondrial chaperone TRAP1 is a key regulator of cellular homeostasis and its activity has important implications in neurodegeneration, ischemia and cancer. Recent evidence has indicated that TRAP1 mutations are involved in several disorders, even though the structural basis for the impact of point mutations on TRAP1 functions has never been studied. By exploiting a modular structure-based framework and molecular dynamics simulations, we investigated the effect of five TRAP1 mutations on its structure and stability. Each mutation differentially impacts long-range interactions, intra and inter-protomer dynamics and ATPase activity. Changes in these parameters influence TRAP1 functions, as revealed by their effects on the activity of the TRAP1 interactor succinate dehydrogenase (SDH). In keeping with this, TRAP1 point mutations affect the growth and migration of aggressive sarcoma cells, and alter sensitivity to a selective TRAP1 inhibitor. Our work provides new insights on the structure-activity relationship of TRAP1, identifying crucial amino acid residues that regulate TRAP1 proteostatic functions and pro-neoplastic activity.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"172"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07467-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mitochondrial chaperone TRAP1 is a key regulator of cellular homeostasis and its activity has important implications in neurodegeneration, ischemia and cancer. Recent evidence has indicated that TRAP1 mutations are involved in several disorders, even though the structural basis for the impact of point mutations on TRAP1 functions has never been studied. By exploiting a modular structure-based framework and molecular dynamics simulations, we investigated the effect of five TRAP1 mutations on its structure and stability. Each mutation differentially impacts long-range interactions, intra and inter-protomer dynamics and ATPase activity. Changes in these parameters influence TRAP1 functions, as revealed by their effects on the activity of the TRAP1 interactor succinate dehydrogenase (SDH). In keeping with this, TRAP1 point mutations affect the growth and migration of aggressive sarcoma cells, and alter sensitivity to a selective TRAP1 inhibitor. Our work provides new insights on the structure-activity relationship of TRAP1, identifying crucial amino acid residues that regulate TRAP1 proteostatic functions and pro-neoplastic activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
The role of vitamin K and its antagonist in the process of ferroptosis-damaged RPE-mediated CNV. NAT10 mediates TLR2 to promote podocyte senescence in adriamycin-induced nephropathy. Retraction Note: Annexin A1-suppressed autophagy promotes nasopharyngeal carcinoma cell invasion and metastasis by PI3K/AKT signaling activation. Senataxin prevents replicative stress induced by the Myc oncogene. YAP1 facilitates the pathogenesis of psoriasis via modulating keratinocyte proliferation and inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1