Aggregatin is a mitochondrial regulator of MAVS activation to drive innate immunity.

IF 3.6 3区 医学 Q2 IMMUNOLOGY Journal of immunology Pub Date : 2025-02-01 DOI:10.1093/jimmun/vkae019
Ju Gao, Mao Ding, Yanbin Xiyang, Siyue Qin, Devanshi Shukla, Jiawei Xu, Masaru Miyagi, Hisashi Fujioka, Jingjing Liang, Xinglong Wang
{"title":"Aggregatin is a mitochondrial regulator of MAVS activation to drive innate immunity.","authors":"Ju Gao, Mao Ding, Yanbin Xiyang, Siyue Qin, Devanshi Shukla, Jiawei Xu, Masaru Miyagi, Hisashi Fujioka, Jingjing Liang, Xinglong Wang","doi":"10.1093/jimmun/vkae019","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation. Here we show that Aggregatin serves as a cross-seed for MAVS aggregates on mitochondria to orchestrate innate immune signaling. Aggregatin is primarily localized to mitochondria in the cytosol and has the ability to induce MAVS aggregation and MAVS-dependent IFN-I responses alone in both HEK293 cells and human leukemia monocytic THP-1 cells. Mitochondrial Aggregatin level increases upon viral infection. Also, Aggregatin knockout suppresses viral infection-induced MAVS aggregation and IFN-I signal cascade activation. Nemo-like kinase is further identified as a kinase phosphorylating Aggregatin at Ser59 to regulate its stability and cross-seeding activity. Collectively, our finding reveals an important physiological function of Aggregatin in innate immunity by cross-seeding MAVS aggregation.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":"214 2","pages":"238-252"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jimmun/vkae019","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation. Here we show that Aggregatin serves as a cross-seed for MAVS aggregates on mitochondria to orchestrate innate immune signaling. Aggregatin is primarily localized to mitochondria in the cytosol and has the ability to induce MAVS aggregation and MAVS-dependent IFN-I responses alone in both HEK293 cells and human leukemia monocytic THP-1 cells. Mitochondrial Aggregatin level increases upon viral infection. Also, Aggregatin knockout suppresses viral infection-induced MAVS aggregation and IFN-I signal cascade activation. Nemo-like kinase is further identified as a kinase phosphorylating Aggregatin at Ser59 to regulate its stability and cross-seeding activity. Collectively, our finding reveals an important physiological function of Aggregatin in innate immunity by cross-seeding MAVS aggregation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
期刊最新文献
The transcription factor RORα is required for the development of type 1 innate lymphoid cells in adult bone marrow. EZH2 coordinates memory B-cell programming and recall responses. Novel RORγt inverse agonists limit IL-17-mediated liver inflammation and fibrosis. Regulation of IL-17A-mediated hypersensitivity by extracellular vesicles and lipid nanoparticles carrying miR-451a. Fish requires FasL to facilitate CD8+ T-cell function and antimicrobial immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1