RGMb drives macrophage infiltration to aggravate kidney disease

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2025-03-13 DOI:10.1073/pnas.2418739122
Yonglun Kong, Ming Yue, Chunhua Xu, Jing Zhang, Huiling Hong, Jiahuan Lu, Yang Wang, Xiaoyi Zhang, Qiuju Chen, Chen Yang, Hua-Feng Liu, Jinzhong Qin, Jingying Zhou, Nam Y. Lee, Bin Lin, Xiaoyu Tian, Gordon J. Freeman, Yin Xia
{"title":"RGMb drives macrophage infiltration to aggravate kidney disease","authors":"Yonglun Kong, Ming Yue, Chunhua Xu, Jing Zhang, Huiling Hong, Jiahuan Lu, Yang Wang, Xiaoyi Zhang, Qiuju Chen, Chen Yang, Hua-Feng Liu, Jinzhong Qin, Jingying Zhou, Nam Y. Lee, Bin Lin, Xiaoyu Tian, Gordon J. Freeman, Yin Xia","doi":"10.1073/pnas.2418739122","DOIUrl":null,"url":null,"abstract":"The importance of macrophages in kidney diseases has been well established; however, the mechanisms underlying the infiltration of macrophages into injured kidneys are not well understood. RGMb is a member of the repulsive guidance molecule (RGM) family. RGMb can be expressed on the cell surface but a large portion of RGMb is localized intracellularly. Among various immune cell types, macrophages express the highest levels of RGMb, but the biological functions of RGMb in macrophages remain largely unknown. We find that RGMb promoted macrophage migration in vitro and that in vivo, RGMb enhanced infiltration of macrophages into injured kidneys and aggravated kidney inflammation and injury in mice. Mechanistically, RGMb bound to TAB1 inside the cell and facilitated the interaction between TRAF6 ubiquitin ligase and TAB1, thereby promoting TRAF6-mediated K63-linked polyubiquitination and phosphorylation of TAK1, followed by increased αTAT1 phosphorylation and α-tubulin acetylation. The resulting changes in the cytoskeleton promoted macrophage migration in vitro and in vivo. Deletion of Rgmb in macrophages markedly reduced TAK1 phosphorylation, αTAT1 phosphorylation, and α-tubulin acetylation and attenuated macrophage infiltration, renal inflammation, tubular injury, and interstitial fibrosis during kidney injury. Our results suggest that macrophage RGMb promotes kidney disease by increasing macrophage infiltration via the TRAF6-TAB1-TAK1/αTAT1/α-tubulin cascade.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"8 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2418739122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of macrophages in kidney diseases has been well established; however, the mechanisms underlying the infiltration of macrophages into injured kidneys are not well understood. RGMb is a member of the repulsive guidance molecule (RGM) family. RGMb can be expressed on the cell surface but a large portion of RGMb is localized intracellularly. Among various immune cell types, macrophages express the highest levels of RGMb, but the biological functions of RGMb in macrophages remain largely unknown. We find that RGMb promoted macrophage migration in vitro and that in vivo, RGMb enhanced infiltration of macrophages into injured kidneys and aggravated kidney inflammation and injury in mice. Mechanistically, RGMb bound to TAB1 inside the cell and facilitated the interaction between TRAF6 ubiquitin ligase and TAB1, thereby promoting TRAF6-mediated K63-linked polyubiquitination and phosphorylation of TAK1, followed by increased αTAT1 phosphorylation and α-tubulin acetylation. The resulting changes in the cytoskeleton promoted macrophage migration in vitro and in vivo. Deletion of Rgmb in macrophages markedly reduced TAK1 phosphorylation, αTAT1 phosphorylation, and α-tubulin acetylation and attenuated macrophage infiltration, renal inflammation, tubular injury, and interstitial fibrosis during kidney injury. Our results suggest that macrophage RGMb promotes kidney disease by increasing macrophage infiltration via the TRAF6-TAB1-TAK1/αTAT1/α-tubulin cascade.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Correction for Rashid et al., Nonpathological inflammation drives the development of an avian flight adaptation. Correction for Yao et al., An organic electrochemical neuron for a neuromorphic perception system. Reply to Fiscella: Why study erosion now? And why these risk factors? Research needed on tipping points and reversal of erosions in democracy. Correction for Kharrat et al., The antimicrobial activity of ETD151 defensin is dictated by the presence of glycosphingolipids in the targeted organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1