Mg-Rich LAPONITE® interface protective layer enables reversible, corrosion-resistant anodes for high-performance magnesium metal batteries†

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2025-03-14 DOI:10.1039/D5QI00310E
Jingxuan Bi, Xiaomei Huo, Zhenkai Zhou, Junhui Li, Ke Wang, Zhuzhu Du and Wei Ai
{"title":"Mg-Rich LAPONITE® interface protective layer enables reversible, corrosion-resistant anodes for high-performance magnesium metal batteries†","authors":"Jingxuan Bi, Xiaomei Huo, Zhenkai Zhou, Junhui Li, Ke Wang, Zhuzhu Du and Wei Ai","doi":"10.1039/D5QI00310E","DOIUrl":null,"url":null,"abstract":"<p >Magnesium metal batteries (MMBs) are considered one of the most promising candidates for the post-lithium era but face significant challenges, including non-uniform plating, irregular stripping, and interface passivation. Herein, we have developed a highly reversible, passivation-free, and corrosion-resistant Mg metal anode by integrating a Mg-rich LAPONITE® (Mg-RL) interface protective layer using a doctor-blading technique. The Mg-RL interface protective layer, with its negatively charged interlayer structure, creates abundant cation transport channels and isolates direct contact between the electrolyte and anode, thus facilitating highly reversible Mg plating/stripping while suppressing anode passivation. As a result, Mg-RL/Mg-based symmetric cells exhibit exceptional cycling stability, maintaining over 1500 h in APC electrolyte and 800 h in Mg(TFSI)<small><sub>2</sub></small> electrolyte under practical current densities and area capacities. Furthermore, the corresponding Mo<small><sub>6</sub></small>S<small><sub>8</sub></small>-based full cells demonstrate excellent electrochemical performance, and the Mg–S pouch cells successfully power a toy car, demonstrating practical viability. This study presents a simple, cost-effective strategy for constructing artificial interface protective layers of Mg metal anodes, advancing the development of stable and safe MMBs.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 10","pages":" 3653-3662"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d5qi00310e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium metal batteries (MMBs) are considered one of the most promising candidates for the post-lithium era but face significant challenges, including non-uniform plating, irregular stripping, and interface passivation. Herein, we have developed a highly reversible, passivation-free, and corrosion-resistant Mg metal anode by integrating a Mg-rich LAPONITE® (Mg-RL) interface protective layer using a doctor-blading technique. The Mg-RL interface protective layer, with its negatively charged interlayer structure, creates abundant cation transport channels and isolates direct contact between the electrolyte and anode, thus facilitating highly reversible Mg plating/stripping while suppressing anode passivation. As a result, Mg-RL/Mg-based symmetric cells exhibit exceptional cycling stability, maintaining over 1500 h in APC electrolyte and 800 h in Mg(TFSI)2 electrolyte under practical current densities and area capacities. Furthermore, the corresponding Mo6S8-based full cells demonstrate excellent electrochemical performance, and the Mg–S pouch cells successfully power a toy car, demonstrating practical viability. This study presents a simple, cost-effective strategy for constructing artificial interface protective layers of Mg metal anodes, advancing the development of stable and safe MMBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富镁拉脱土界面保护层为高性能镁金属电池提供了可逆、耐腐蚀的阳极
镁金属电池(mmb)被认为是后锂时代最有前途的候选者之一,但面临着重大挑战,包括不均匀电镀、不规则剥离和界面钝化。在此,我们开发了一种高度可逆,无钝化,耐腐蚀的镁金属阳极,通过使用医生叶片技术集成富镁拉脱土(Mg- rl)界面保护层。Mg- rl界面保护层具有带负电荷的层间结构,创造了丰富的阳离子传输通道,隔离了电解质与阳极之间的直接接触,从而促进了高可逆的Mg镀/剥离,同时抑制了阳极钝化。因此,Mg- rl /Mg基对称电池表现出优异的循环稳定性,在实际电流密度和面积容量下,在APC电解质中保持1500小时以上,在Mg(TFSI)2电解质中保持800小时以上。此外,相应的基于mo6s8的全电池表现出优异的电化学性能,Mg-S袋电池成功地为玩具汽车供电,证明了实际可行性。本研究提出了一种简单、经济的方法来构建Mg金属阳极的人工界面保护层,促进了稳定、安全的mmb的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Ultra-efficient energy transfer and near-infrared luminescence in hexagonal aluminate phosphors enabled by heterogeneous ion pairs co-doping Truss bridge-like anhydrous stacking in hybrid crystal triggers ultra-high stability and robust birefringence Bridging the gap: thymine segments to create single-strand versions of DNA2-[Ag₁₆Cl₂]8+ A low-loss optical waveguide from a 1D europium nanocluster Exciplex-based multi-stimuli-responsive luminescent materials: photo-recoverable mechanochromic luminescence for reusable paper applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1