Asymmetric Synthesis of Strained Multichiral Spirocyclobutanes through Cage-Confined Cross [2 + 2] Photocycloaddition

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-03-14 DOI:10.1021/jacs.4c18358
Jia Ruan, Yu-Lin Lu, Peng Hu, Cheng-Yong Su
{"title":"Asymmetric Synthesis of Strained Multichiral Spirocyclobutanes through Cage-Confined Cross [2 + 2] Photocycloaddition","authors":"Jia Ruan, Yu-Lin Lu, Peng Hu, Cheng-Yong Su","doi":"10.1021/jacs.4c18358","DOIUrl":null,"url":null,"abstract":"Chiral spirocycles possess the ability to undergo diverse modifications in three-dimensional space, offering advantages in terms of physicochemical property and structural variability over conventional organic scaffolds and holding promising potential for the design of biologically active molecules and drugs. Among them, highly strained spirocyclobutanes with multiple chiral center-containing four-membered rings have attracted significant attention, but their viable and efficient synthesis poses a great challenge. By virtue of cage-confined asymmetric photocatalysis, we successfully construct spirocycle and bispirocycle compounds containing multiple quaternary and tertiary chiral carbon centers in cyclobutane rings through cross [2 + 2] photocycloaddition with visible-light-induced and mild reactions. The mechanistic studies unveil that the chiral open pockets of a cage photoreactor facilitate dynamic bimolecular recognition to render preferential heteromolecular cross-cycloaddition with enhanced reactivity, unconventional enantioselectivity, and good substrate tolerance, providing a promising direction for enzyme-mimetic catalyst design for challenging asymmetric photochemical transformations.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"10 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c18358","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral spirocycles possess the ability to undergo diverse modifications in three-dimensional space, offering advantages in terms of physicochemical property and structural variability over conventional organic scaffolds and holding promising potential for the design of biologically active molecules and drugs. Among them, highly strained spirocyclobutanes with multiple chiral center-containing four-membered rings have attracted significant attention, but their viable and efficient synthesis poses a great challenge. By virtue of cage-confined asymmetric photocatalysis, we successfully construct spirocycle and bispirocycle compounds containing multiple quaternary and tertiary chiral carbon centers in cyclobutane rings through cross [2 + 2] photocycloaddition with visible-light-induced and mild reactions. The mechanistic studies unveil that the chiral open pockets of a cage photoreactor facilitate dynamic bimolecular recognition to render preferential heteromolecular cross-cycloaddition with enhanced reactivity, unconventional enantioselectivity, and good substrate tolerance, providing a promising direction for enzyme-mimetic catalyst design for challenging asymmetric photochemical transformations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
笼状交叉[2 + 2]光环加成法合成应变多手性螺旋环丁烷
手性螺旋环具有在三维空间中进行多种修饰的能力,与传统的有机支架相比,在物理化学性质和结构可变性方面具有优势,在设计生物活性分子和药物方面具有广阔的潜力。其中含多手性中心的四元环的高应变螺旋环丁烷引起了人们的极大关注,但其可行和高效的合成存在很大的挑战。利用笼型不对称光催化技术,通过交叉[2 + 2]光环加成反应,成功构建了环丁烷环上含有多个季、叔手性碳中心的螺环和双螺环化合物,反应温和,可见诱导。机理研究揭示笼型光反应器的手性开袋有助于动态双分子识别,使异分子交叉环加成具有增强的反应活性、非常规的对映选择性和良好的底物耐受性,为挑战不对称光化学转化的模拟酶催化剂设计提供了一个有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Discovery of Stacking Heterogeneity, Layer Buckling, and Residual Water in COF-999-NH2 and Implications on CO2 Capture Interpreting X-ray Diffraction Patterns of Metal–Organic Frameworks via Generative Artificial Intelligence Deep Learning Guided Exploration of Transition Metal Oxide Catalysts in Acetylene Selective Hydrogenation Conserved Transmembrane Asparagine Is Essential for the Ion-Conducting Structure and Dynamics of the SARS-CoV-2 Envelope Protein. Polyacid-Protonated Covalent Organic Frameworks Enable Stable and Efficient Photothermal Textiles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1