Learning how to transfer: A lifelong domain knowledge distillation framework for continual MRC

Songze Li , Zhijing Wu , Runmin Cao , Xiaohan Zhang , Yifan Wang , Hua Xu , Kai Gao
{"title":"Learning how to transfer: A lifelong domain knowledge distillation framework for continual MRC","authors":"Songze Li ,&nbsp;Zhijing Wu ,&nbsp;Runmin Cao ,&nbsp;Xiaohan Zhang ,&nbsp;Yifan Wang ,&nbsp;Hua Xu ,&nbsp;Kai Gao","doi":"10.1016/j.iswa.2025.200497","DOIUrl":null,"url":null,"abstract":"<div><div>Machine Reading Comprehension (MRC) has attracted wide attention in recent years. It can reflect how well a machine understands human language. Benefitting from the increasing large-scale benchmark and pre-trained language models, a lot of MRC models have achieved remarkable success and even exceeded human performance. However, real-world MRC systems need incrementally learn from a continuous data stream across time without accessing the previously seen data, called Continual MRC system. It is a great challenge to learn a new domain incrementally without catastrophically forgetting previous knowledge. In this paper, MK-MRC (an extension of MA-MRC), a continual MRC framework with uncertainty-aware fixed <strong>M</strong>emory and lifelong domain <strong>K</strong>nowledge distillation, is proposed. MK-MRC is a memory replaying based method, in which a fixed-size memory buffer stores a small number of samples in previous domain data along with an uncertainty-aware updating strategy when new domain data arrives. For incremental learning, MK-MRC fully uses the domain adaptation and transfer relationship between memory and new domain data through several domain knowledge distillation strategies.</div><div>Compared with MA-MRC, MK-MRC additionally introduces more strategies to strengthen the ability of continual learning, such as data augmentation and special task-related knowledge distillation. Experimental results show that MK-MRC yields consistent improvement compared with strong baselines and has a substantial incremental learning ability without catastrophically forgetting under four continual span-extractive and multiple-choice MRC settings.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"26 ","pages":"Article 200497"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Reading Comprehension (MRC) has attracted wide attention in recent years. It can reflect how well a machine understands human language. Benefitting from the increasing large-scale benchmark and pre-trained language models, a lot of MRC models have achieved remarkable success and even exceeded human performance. However, real-world MRC systems need incrementally learn from a continuous data stream across time without accessing the previously seen data, called Continual MRC system. It is a great challenge to learn a new domain incrementally without catastrophically forgetting previous knowledge. In this paper, MK-MRC (an extension of MA-MRC), a continual MRC framework with uncertainty-aware fixed Memory and lifelong domain Knowledge distillation, is proposed. MK-MRC is a memory replaying based method, in which a fixed-size memory buffer stores a small number of samples in previous domain data along with an uncertainty-aware updating strategy when new domain data arrives. For incremental learning, MK-MRC fully uses the domain adaptation and transfer relationship between memory and new domain data through several domain knowledge distillation strategies.
Compared with MA-MRC, MK-MRC additionally introduces more strategies to strengthen the ability of continual learning, such as data augmentation and special task-related knowledge distillation. Experimental results show that MK-MRC yields consistent improvement compared with strong baselines and has a substantial incremental learning ability without catastrophically forgetting under four continual span-extractive and multiple-choice MRC settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
ECAT: A Entire space Continual and Adaptive Transfer Learning Framework for Cross-Domain Recommendation
IF 0 arXiv - CS - Information RetrievalPub Date : 2024-07-02 DOI: arxiv-2407.02542
Chaoqun Hou, Yuanhang Zhou, Yi Cao, Tong Liu
A continual learning framework to train robust image recognition models by adversarial training and knowledge distillation
IF 5.3 4区 计算机科学Connection SciencePub Date : 2024-07-20 DOI: 10.1080/09540091.2024.2379268
Ting-Chun Chou, Yu-Cheng Kuo, Jhih-Yuan Huang, Wei-Po Lee
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
Integrated framework of fragment-based method and generative model for lead drug molecules discovery Deep learning for efficient high-resolution image processing: A systematic review Leveraging social networks as an optimization approach A systematic literature review of quantum object detection and recognition: research trend, datasets, topics and methods An effective approach for early fuel leakage detection with enhanced explainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1