Kun Xing , Zhengwei Pan , Haifeng Wang , Yimeng Sang , Yun Zhang , Tao Tao , Zhe Zhuang , Rong Zhang , Bin Liu
{"title":"Demonstration of 633-nm InGaN-based red light-emitting diodes on a semipolar (11–22) GaN template","authors":"Kun Xing , Zhengwei Pan , Haifeng Wang , Yimeng Sang , Yun Zhang , Tao Tao , Zhe Zhuang , Rong Zhang , Bin Liu","doi":"10.1016/j.optcom.2025.131749","DOIUrl":null,"url":null,"abstract":"<div><div>This work demonstrated semipolar (11–22) InGaN-based red light-emitting diodes (LEDs) with a peak wavelength of 633.4 nm at 1 A/cm<sup>2</sup>. We achieved a strain-relaxed semipolar (11–22) GaN template grown on m-plane sapphire substrate by inserting an in-situ SiN<sub>x</sub> layer. X-ray rocking curve shows that the in-plane anisotropy of the template is reduced compared to those without the SiN<sub>x</sub> template. At a current density of 1 A/cm<sup>2</sup>, the semipolar LEDs with the SiN<sub>x</sub> interlayer exhibit a longer wavelength by 24.4 nm compared to those without the SiN<sub>x</sub> layer. The external quantum efficiency (EQE) of the semipolar LED peak at 1.65 % when the current density of 4 A/cm<sup>2</sup>. These findings underscore the potential of utilizing the semipolar (11–22) planes for developing high-performance InGaN-based red LEDs.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"583 ","pages":"Article 131749"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825002779","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work demonstrated semipolar (11–22) InGaN-based red light-emitting diodes (LEDs) with a peak wavelength of 633.4 nm at 1 A/cm2. We achieved a strain-relaxed semipolar (11–22) GaN template grown on m-plane sapphire substrate by inserting an in-situ SiNx layer. X-ray rocking curve shows that the in-plane anisotropy of the template is reduced compared to those without the SiNx template. At a current density of 1 A/cm2, the semipolar LEDs with the SiNx interlayer exhibit a longer wavelength by 24.4 nm compared to those without the SiNx layer. The external quantum efficiency (EQE) of the semipolar LED peak at 1.65 % when the current density of 4 A/cm2. These findings underscore the potential of utilizing the semipolar (11–22) planes for developing high-performance InGaN-based red LEDs.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.