Ayse Cagil Kandemir , Azca Sajid , Muhammad Ali Shaheer Khan , Talha Rafiq , Hatice Kaplan Can
{"title":"Impact of gradient nanocomposite coating design on the surface mechanical properties of soft composite substrate","authors":"Ayse Cagil Kandemir , Azca Sajid , Muhammad Ali Shaheer Khan , Talha Rafiq , Hatice Kaplan Can","doi":"10.1016/j.porgcoat.2025.109228","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the influence of gradient nanocomposite coatings on the surface mechanical properties of soft composite substrates (modulus: 150 MPa). Polyvinylpyrrolidone reinforced with halloysite nanotubes was used to fabricate gradient (e.g. 5/15/30 wt%) and reverse gradient (e.g. 30/15/5 wt%) coatings for comparative analysis. Reverse gradient coatings consistently exhibited superior surface properties, particularly in thicker (30 μm) systems, where stiffer sublayers effectively transferred stress to the surface. The 30/15/5 reverse gradient coating achieved a modulus of 2.92 GPa, significantly outperforming its gradient counterpart (0.33 GPa) at similar indentation depths. In contrast, thinner (15 μm) gradient coatings with smaller concentration variations (5/10/15 wt%) facilitated a significantly smoother mechanical transition and improved stress distribution, while larger concentration differences (5/15/30 wt%) amplified substrate effects, increasing indentation depth. These findings highlight the trade-offs in coating design: gradient coatings optimize mechanical transitions, making them ideal for functional interfaces and load-distributing layers, while reverse gradient coatings ensure greater mechanical consistency, making them suitable for protective and structural applications requiring enhanced surface durability.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"204 ","pages":"Article 109228"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944025001778","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the influence of gradient nanocomposite coatings on the surface mechanical properties of soft composite substrates (modulus: 150 MPa). Polyvinylpyrrolidone reinforced with halloysite nanotubes was used to fabricate gradient (e.g. 5/15/30 wt%) and reverse gradient (e.g. 30/15/5 wt%) coatings for comparative analysis. Reverse gradient coatings consistently exhibited superior surface properties, particularly in thicker (30 μm) systems, where stiffer sublayers effectively transferred stress to the surface. The 30/15/5 reverse gradient coating achieved a modulus of 2.92 GPa, significantly outperforming its gradient counterpart (0.33 GPa) at similar indentation depths. In contrast, thinner (15 μm) gradient coatings with smaller concentration variations (5/10/15 wt%) facilitated a significantly smoother mechanical transition and improved stress distribution, while larger concentration differences (5/15/30 wt%) amplified substrate effects, increasing indentation depth. These findings highlight the trade-offs in coating design: gradient coatings optimize mechanical transitions, making them ideal for functional interfaces and load-distributing layers, while reverse gradient coatings ensure greater mechanical consistency, making them suitable for protective and structural applications requiring enhanced surface durability.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.