{"title":"Memcapacitive Spiking Neurons and Associative Memory Application","authors":"S. J. Dat Tran","doi":"10.1109/ACCESS.2025.3549357","DOIUrl":null,"url":null,"abstract":"The Hodgkin and Huxley neuron model describes the complex behavior of biological neurons. However, due to the complexity of these computations, the Hodgkin and Huxley models are impractical for use in large-scale networks. In contrast, Izhikevich introduced a simpler model capable of producing various firing patterns typical of cortical neurons. This study proposes a novel model of memcapacitive-based neurons that offers a potential implementation of spiking neurons with energy efficiency due to the inherent storage nature of memcapacitive devices. The findings demonstrate that memcapacitive neurons can produce 23 firing patterns similar to Izhikevich neurons but at significantly higher firing rates. Memcapacitive neurons exhibit firing patterns associated with excitatory, inhibitory, and thalamocortical neurons. Similar to Izhikevich neurons, pulse-coupled neural networks of memcapacitive neurons display collective behaviors, such as synchronous and asynchronous responses, which are common in the biological brain. Compared to Hopfield and Izhikevich networks in content-addressable memory applications, memcapacitive networks successfully retrieved correct memory patterns with high accuracy, even for distorted inputs of up to 40%. The simulation results illustrate that the novel model of the memcapacitive spiking neuron offers a potential advancement in implementing artificial spiking neurons with high energy efficiency, bringing a step closer to mimicking biological neurons.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"43933-43946"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916667","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10916667/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Hodgkin and Huxley neuron model describes the complex behavior of biological neurons. However, due to the complexity of these computations, the Hodgkin and Huxley models are impractical for use in large-scale networks. In contrast, Izhikevich introduced a simpler model capable of producing various firing patterns typical of cortical neurons. This study proposes a novel model of memcapacitive-based neurons that offers a potential implementation of spiking neurons with energy efficiency due to the inherent storage nature of memcapacitive devices. The findings demonstrate that memcapacitive neurons can produce 23 firing patterns similar to Izhikevich neurons but at significantly higher firing rates. Memcapacitive neurons exhibit firing patterns associated with excitatory, inhibitory, and thalamocortical neurons. Similar to Izhikevich neurons, pulse-coupled neural networks of memcapacitive neurons display collective behaviors, such as synchronous and asynchronous responses, which are common in the biological brain. Compared to Hopfield and Izhikevich networks in content-addressable memory applications, memcapacitive networks successfully retrieved correct memory patterns with high accuracy, even for distorted inputs of up to 40%. The simulation results illustrate that the novel model of the memcapacitive spiking neuron offers a potential advancement in implementing artificial spiking neurons with high energy efficiency, bringing a step closer to mimicking biological neurons.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.