A CFD simulation of 3D tsunami-like solitary wave propagation in a reef-lagoon-channel coastal system

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL Ocean Engineering Pub Date : 2025-03-14 DOI:10.1016/j.oceaneng.2025.120881
Yu Yao , Yuren Zeng , Ting Zhou , Changbo Jiang
{"title":"A CFD simulation of 3D tsunami-like solitary wave propagation in a reef-lagoon-channel coastal system","authors":"Yu Yao ,&nbsp;Yuren Zeng ,&nbsp;Ting Zhou ,&nbsp;Changbo Jiang","doi":"10.1016/j.oceaneng.2025.120881","DOIUrl":null,"url":null,"abstract":"<div><div>There has been significant interest in post-tsunami surveys regarding how effective fringing reefs are at protecting coastlines from inundation caused by tsunamis. Limited attention has been given to the wave transformation characteristics and wave run-up dynamics within a complex reef-lagoon-channel system compared to the extensively studied two-dimensional horizontal fringing reefs. In response to this research gap, a three-dimensional numerical wave tank has been created, incorporating the incompressible Reynolds-averaged Navier-Stokes equations accompanied with <em>k-ω</em> SST turbulence model. The volume of fluid (VOF) strategy is employed to track the free surface, accompanied by advanced grid cascading encryption technology. Laboratory measurements (Swigler, 2009; Briggs et al., 1995) of the waves are utilized for model validation. The influence of incident wave height, reef flat submergence, fore-reef slope, and channel width on wave propagation characteristics were examined. The results reveal that the relative run-up decreases with larger wave heights and decreases near channels as reef flat submergences rise. Initially, smaller channels reduce relative run-up, but it increases again with widening, shifting the maximum relative run-up location away from the channel, while fore-reef slope changes minimally affect run-up.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"326 ","pages":"Article 120881"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825005943","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

There has been significant interest in post-tsunami surveys regarding how effective fringing reefs are at protecting coastlines from inundation caused by tsunamis. Limited attention has been given to the wave transformation characteristics and wave run-up dynamics within a complex reef-lagoon-channel system compared to the extensively studied two-dimensional horizontal fringing reefs. In response to this research gap, a three-dimensional numerical wave tank has been created, incorporating the incompressible Reynolds-averaged Navier-Stokes equations accompanied with k-ω SST turbulence model. The volume of fluid (VOF) strategy is employed to track the free surface, accompanied by advanced grid cascading encryption technology. Laboratory measurements (Swigler, 2009; Briggs et al., 1995) of the waves are utilized for model validation. The influence of incident wave height, reef flat submergence, fore-reef slope, and channel width on wave propagation characteristics were examined. The results reveal that the relative run-up decreases with larger wave heights and decreases near channels as reef flat submergences rise. Initially, smaller channels reduce relative run-up, but it increases again with widening, shifting the maximum relative run-up location away from the channel, while fore-reef slope changes minimally affect run-up.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Sediment-associated microplastics in Chilika lake, India: Highlighting their prevalence, polymer types, possible sources, and ecological risks
IF 9.8 1区 环境科学与生态学Science of the Total EnvironmentPub Date : 2024-01-04 DOI: 10.1016/j.scitotenv.2023.169707
Mohit Kumar , Dinesh Kumar Naik , Dusmant Maharana , Moumita Das , Ekta Jaiswal , Amiya Shankar Naik , Neha Kumari
Research progress of microplastics in soil-plant system: Ecological effects and potential risks.
IF 9.8 2区 医学ACS Biomaterials Science & EngineeringPub Date : 2022-03-15 DOI: 10.1016/j.scitotenv.2021.151487
Danlian Huang, Xinya Wang, Lingshi Yin, Sha Chen, Jiaxi Tao, Wei Zhou, Haojie Chen, Gaoxia Zhang, Ruihao Xiao
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
期刊最新文献
Fully-coupled load-stress analysis of a floating offshore wind turbine for a parked design load case using HydroQus A novel two-way coupled algorithm of time-domain hydro-elastic analysis for free-end offshore floating structures using inertia relief method Construction accuracy evaluation of ship stiffened panel based on 3D model reconstruction Hydrodynamic optimization of artificial downwelling systems in linearly stratified water bodies with crossflow Numerical investigation of collection parameters on hydraulic collection and flow field characteristics for the dual-jets based technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1