The multifaceted role of YSL proteins: Iron transport and emerging functions in plant metal homeostasis

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. General subjects Pub Date : 2025-03-14 DOI:10.1016/j.bbagen.2025.130792
Anil Kumar , Riya Joon , Gourav Singh , Jagtar Singh , Ajay Kumar Pandey
{"title":"The multifaceted role of YSL proteins: Iron transport and emerging functions in plant metal homeostasis","authors":"Anil Kumar ,&nbsp;Riya Joon ,&nbsp;Gourav Singh ,&nbsp;Jagtar Singh ,&nbsp;Ajay Kumar Pandey","doi":"10.1016/j.bbagen.2025.130792","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding metal transport in plants has always been critical. Several gene families have been identified in the last two decades that have aided in the understanding of channelized metal transport, including their uptake, distribution, and storage in plants. Identifying Yellow Stripe-like (YSL) genes has contributed to an improved understanding of metal homeostasis in plants, especially monocots. Several studies have demonstrated that these genes play a role in transporting metals complexed with phytosiderophores (PS) and/or nicotianamine (NA). In the current review, we have discussed and opinionated the signalling role of YSL protein in maintaining inter and intracellular metal homeostasis in plants. Although the genes are known to have a broader range of metal substrate specificity, these are primary iron (Fe) transporters, and a detailed Fe transport in plants is discussed. Furthermore, based on recent findings, alternative functions of these genes are also discussed. Overall, we provide a broader overview of YSL protein in modulating the Fe mobilization and provides evidence of the expanding functions in plants.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 6","pages":"Article 130792"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000376","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding metal transport in plants has always been critical. Several gene families have been identified in the last two decades that have aided in the understanding of channelized metal transport, including their uptake, distribution, and storage in plants. Identifying Yellow Stripe-like (YSL) genes has contributed to an improved understanding of metal homeostasis in plants, especially monocots. Several studies have demonstrated that these genes play a role in transporting metals complexed with phytosiderophores (PS) and/or nicotianamine (NA). In the current review, we have discussed and opinionated the signalling role of YSL protein in maintaining inter and intracellular metal homeostasis in plants. Although the genes are known to have a broader range of metal substrate specificity, these are primary iron (Fe) transporters, and a detailed Fe transport in plants is discussed. Furthermore, based on recent findings, alternative functions of these genes are also discussed. Overall, we provide a broader overview of YSL protein in modulating the Fe mobilization and provides evidence of the expanding functions in plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochimica et biophysica acta. General subjects
Biochimica et biophysica acta. General subjects 生物-生化与分子生物学
CiteScore
6.40
自引率
0.00%
发文量
139
审稿时长
30 days
期刊介绍: BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.
期刊最新文献
The multifaceted role of YSL proteins: Iron transport and emerging functions in plant metal homeostasis Protein-protein interactions as determinants of operon architecture Integrating gold nanostars into condensed DNA. STAT3-orchestrated gene expression signatures and tumor microenvironment in esophageal squamous cell carcinoma uncovered by single-cell sequencing Compartmentation of multiple metabolic enzymes and their preparation in vitro and in cellulo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1