Xiang Li , Qiyao Li , Yunzhu Wang , Nengsheng Liu , Wanjin Yu , Chunxia Liu , Ping Du , Yi Xia , Sufang He
{"title":"In-situ formation of Bi-O-C bonds on BiOCl/azo-porous organic polymers heterostructure for enhanced visible light-driven photocatalytic activity","authors":"Xiang Li , Qiyao Li , Yunzhu Wang , Nengsheng Liu , Wanjin Yu , Chunxia Liu , Ping Du , Yi Xia , Sufang He","doi":"10.1016/j.surfin.2025.106208","DOIUrl":null,"url":null,"abstract":"<div><div>Porous organic polymers (POPs) are highly effective in wastewater decontamination owing to enhanced light-harvesting, abundant active sites, and tunable band structures. In this study, a novel heterojunction was designed and constructed by coupling oxygen vacancy BiOCl and azo-porous organic polymers (A-POP) through an in-situ solvothermal reaction. The characterization results revealed that the Bi-O-C bonds at the interface of BiOCl/A-POP heterojunction promoted the reinforcement of the built-in electric field and increased oxygen vacancies, thereby improving the interface migration of photogenerated carriers and photocatalytic performance. The BiOCl/A-POP composites exhibited enhanced photocatalytic degradation of Rhodamine B (RhB), achieving a maximum degradation of 90 % within 20 min under visible light. In addition, the probable photodegradation pathways and mechanisms were proposed based on experiments and density functional theory calculations. This study offers a new approach to developing heterostructured photocatalysts through inorganic/organic coupling to eliminate pollutants from wastewater.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"62 ","pages":"Article 106208"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025004675","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Porous organic polymers (POPs) are highly effective in wastewater decontamination owing to enhanced light-harvesting, abundant active sites, and tunable band structures. In this study, a novel heterojunction was designed and constructed by coupling oxygen vacancy BiOCl and azo-porous organic polymers (A-POP) through an in-situ solvothermal reaction. The characterization results revealed that the Bi-O-C bonds at the interface of BiOCl/A-POP heterojunction promoted the reinforcement of the built-in electric field and increased oxygen vacancies, thereby improving the interface migration of photogenerated carriers and photocatalytic performance. The BiOCl/A-POP composites exhibited enhanced photocatalytic degradation of Rhodamine B (RhB), achieving a maximum degradation of 90 % within 20 min under visible light. In addition, the probable photodegradation pathways and mechanisms were proposed based on experiments and density functional theory calculations. This study offers a new approach to developing heterostructured photocatalysts through inorganic/organic coupling to eliminate pollutants from wastewater.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)