{"title":"Data quality management in big data: Strategies, tools, and educational implications","authors":"Thu Nguyen , Hong-Tri Nguyen , Tu-Anh Nguyen-Hoang","doi":"10.1016/j.jpdc.2025.105067","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the critical need for effective Big Data Quality Management (BDQM) in education, a field where data quality has profound implications but remains underexplored. The work systematically progresses from requirement analysis and standard development to the deployment of tools for monitoring and enhancing data quality in big data workflows. The study's contributions are substantiated through five research questions that explore the impact of data quality on analytics, the establishment of evaluation standards, centralized management strategies, improvement techniques, and education-specific BDQM adaptations. By addressing these questions, the research advances both theoretical and practical frameworks, equipping stakeholders with the tools to enhance the reliability and efficiency of data-driven educational initiatives. Integrating Artificial Intelligence (AI) and distributed computing, this research introduces a novel multi-stage BDQM framework that emphasizes data quality assessment, centralized governance, and AI-enhanced improvement techniques. This work underscores the transformative potential of robust BDQM systems in supporting informed decision-making and achieving sustainable outcomes in educational projects. The survey findings highlight the potential for automated data management within big data architectures, suggesting that data quality frameworks can be significantly enhanced by leveraging AI and distributed computing. Additionally, the survey emphasizes emerging trends in big data quality management, specifically (i) automated data cleaning and cleansing and (ii) data enrichment and augmentation.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"200 ","pages":"Article 105067"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000346","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the critical need for effective Big Data Quality Management (BDQM) in education, a field where data quality has profound implications but remains underexplored. The work systematically progresses from requirement analysis and standard development to the deployment of tools for monitoring and enhancing data quality in big data workflows. The study's contributions are substantiated through five research questions that explore the impact of data quality on analytics, the establishment of evaluation standards, centralized management strategies, improvement techniques, and education-specific BDQM adaptations. By addressing these questions, the research advances both theoretical and practical frameworks, equipping stakeholders with the tools to enhance the reliability and efficiency of data-driven educational initiatives. Integrating Artificial Intelligence (AI) and distributed computing, this research introduces a novel multi-stage BDQM framework that emphasizes data quality assessment, centralized governance, and AI-enhanced improvement techniques. This work underscores the transformative potential of robust BDQM systems in supporting informed decision-making and achieving sustainable outcomes in educational projects. The survey findings highlight the potential for automated data management within big data architectures, suggesting that data quality frameworks can be significantly enhanced by leveraging AI and distributed computing. Additionally, the survey emphasizes emerging trends in big data quality management, specifically (i) automated data cleaning and cleansing and (ii) data enrichment and augmentation.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.