CSEM Data Denoising Based on STL-LPFMD

Zijie Liu;Yanfang Hu;Diquan Li
{"title":"CSEM Data Denoising Based on STL-LPFMD","authors":"Zijie Liu;Yanfang Hu;Diquan Li","doi":"10.1109/LGRS.2025.3544658","DOIUrl":null,"url":null,"abstract":"Strong electromagnetic interference is one of the main factors affecting the effectiveness of electromagnetic exploration. In this study, the seasonal-trend decomposition based on Loess (STL) and low-pass feature mode decomposition (LPFMD) are applied to controlled-source electromagnetic method (CSEM) signal processing for the first time. The method we proposed is verified the effectiveness and practicability by the simulated and measured data of wide-field electromagnetic method (WFEM). The results show that the combination of STL and LPFMD realizes effective removal of strong electromagnetic interference and further improves the signal-to-noise ratio (SNR) of CSEM observed data.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10900434/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Strong electromagnetic interference is one of the main factors affecting the effectiveness of electromagnetic exploration. In this study, the seasonal-trend decomposition based on Loess (STL) and low-pass feature mode decomposition (LPFMD) are applied to controlled-source electromagnetic method (CSEM) signal processing for the first time. The method we proposed is verified the effectiveness and practicability by the simulated and measured data of wide-field electromagnetic method (WFEM). The results show that the combination of STL and LPFMD realizes effective removal of strong electromagnetic interference and further improves the signal-to-noise ratio (SNR) of CSEM observed data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 STL-LPFMD 的 CSEM 数据去噪
强电磁干扰是影响电磁勘探效果的主要因素之一。本研究首次将基于黄土的季节趋势分解(STL)和低通特征模式分解(LPFMD)应用于可控源电磁法(CSEM)信号处理。我们提出的方法通过宽场电磁法(WFEM)的模拟和测量数据验证了其有效性和实用性。结果表明,STL 和 LPFMD 的结合实现了强电磁干扰的有效去除,并进一步提高了 CSEM 观测数据的信噪比(SNR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporating Stratal Dip to Constrain the Integration Range of Marchenko Imaging Weakly Supervised Semantic Segmentation of Remote Sensing Scenes With Cross-Image Class Token Constraints fKAN-UNet: Lightweight Road Segmentation With Fractional Spectral Modeling and Directional Convolutions MDAFNet: Multiscale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection MSA-GAN: Multistructure Adaptive Generative Adversarial Network for Semi-Supervised Remote Sensing Road Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1