{"title":"Enhancing Reinforcement Learning-Based Energy Management Through Transfer Learning With Load and PV Forecasting","authors":"Chang Xu;Masahiro Inuiguchi;Naoki Hayashi;Wong Jee Keen Raymond;Hazlie Mokhlis;Hazlee Azil Illias","doi":"10.1109/ACCESS.2025.3548990","DOIUrl":null,"url":null,"abstract":"Effective energy management in microgrids with renewable energy sources is crucial for maintaining system stability while minimizing operational costs. However, traditional Reinforcement Learning (RL) controllers often encounter challenges, including long training time and instability during the training process. This study introduces a novel approach that integrates Transfer Learning (TL) techniques with RL controllers to address these issues. By using synthetic datasets generated by advanced forecasting models, such as ResNet18+BiLSTM, the proposed method pre-trains RL agents, embedding domain knowledge to enhance performance. The results, based on one year of operational data, show that TL-enhanced RL controllers significantly reduce cumulative operation costs and system imbalance, achieving up to a 62.63% reduction in costs and an 80% improvement in balance compared to baseline models. Furthermore, the proposed method improves initial performance and shortens the training duration needed to reach operational thresholds. This approach demonstrates the potential of combining TL with RL to develop efficient, cost-effective solutions for real-time energy management in complex power systems.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"43956-43972"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916641","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10916641/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Effective energy management in microgrids with renewable energy sources is crucial for maintaining system stability while minimizing operational costs. However, traditional Reinforcement Learning (RL) controllers often encounter challenges, including long training time and instability during the training process. This study introduces a novel approach that integrates Transfer Learning (TL) techniques with RL controllers to address these issues. By using synthetic datasets generated by advanced forecasting models, such as ResNet18+BiLSTM, the proposed method pre-trains RL agents, embedding domain knowledge to enhance performance. The results, based on one year of operational data, show that TL-enhanced RL controllers significantly reduce cumulative operation costs and system imbalance, achieving up to a 62.63% reduction in costs and an 80% improvement in balance compared to baseline models. Furthermore, the proposed method improves initial performance and shortens the training duration needed to reach operational thresholds. This approach demonstrates the potential of combining TL with RL to develop efficient, cost-effective solutions for real-time energy management in complex power systems.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.