A Comprehensive and Efficient Topology Representation in Routing Computation for Large-Scale Transmission Networks

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Network and Service Management Pub Date : 2024-10-08 DOI:10.1109/TNSM.2024.3476138
Yonghan Wu;Jin Li;Min Zhang;Bing Ye;Xiongyan Tang
{"title":"A Comprehensive and Efficient Topology Representation in Routing Computation for Large-Scale Transmission Networks","authors":"Yonghan Wu;Jin Li;Min Zhang;Bing Ye;Xiongyan Tang","doi":"10.1109/TNSM.2024.3476138","DOIUrl":null,"url":null,"abstract":"Large-scale transmission network (LSTN) puts forward high requirements to 6G in quality of service (QoS). In the LSTN, bounded and low delay, low packet loss rates, and controllable bandwidth are required to provide guaranteed QoS, involving techniques from the network layer and physical layer. In those techniques, routing computation is one of the fundamental problems to ensure high QoS, especially for bounded and low delay. Routing computation in LSTN researches include the routing recovery based on searching and pruning strategies, individual-component routing and fiber connections, and multi-point relaying (MRP)-based topology and routing selection. However, these schemes reduce the routing time only through simple topological pruning or linear constraints, which is unsuitable for efficient routing in LSTN with increasing scales and dynamics. In this paper, an efficient and comprehensive {routing computation algorithm namely multi-factor assessment and compression for network topologies (MC) is proposed. Multiple parameters from nodes and links in networks are jointly assessed, and topology compression for network topologies is executed based on MC to accelerate routing computation. Simulation results show that MC brings space complexity but reduces time cost of routing computation obviously. In larger network topologies, compared with classic and advanced routing algorithms, the higher performance improvement about routing computation time, the number of transmitted service, average throughput of single routing, and packet loss rates of MC-based routing algorithms are realized, which has potentials to meet the high QoS requirements in LSTN.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 1","pages":"220-241"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10709341/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale transmission network (LSTN) puts forward high requirements to 6G in quality of service (QoS). In the LSTN, bounded and low delay, low packet loss rates, and controllable bandwidth are required to provide guaranteed QoS, involving techniques from the network layer and physical layer. In those techniques, routing computation is one of the fundamental problems to ensure high QoS, especially for bounded and low delay. Routing computation in LSTN researches include the routing recovery based on searching and pruning strategies, individual-component routing and fiber connections, and multi-point relaying (MRP)-based topology and routing selection. However, these schemes reduce the routing time only through simple topological pruning or linear constraints, which is unsuitable for efficient routing in LSTN with increasing scales and dynamics. In this paper, an efficient and comprehensive {routing computation algorithm namely multi-factor assessment and compression for network topologies (MC) is proposed. Multiple parameters from nodes and links in networks are jointly assessed, and topology compression for network topologies is executed based on MC to accelerate routing computation. Simulation results show that MC brings space complexity but reduces time cost of routing computation obviously. In larger network topologies, compared with classic and advanced routing algorithms, the higher performance improvement about routing computation time, the number of transmitted service, average throughput of single routing, and packet loss rates of MC-based routing algorithms are realized, which has potentials to meet the high QoS requirements in LSTN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模传输网络路由计算中的综合高效拓扑表示法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
期刊最新文献
Table of Contents DIADD: Secure Deduplication and Efficient Data Integrity Auditing With Data Dynamics for Cloud Storage Encrypted Traffic Classification Through Deep Domain Adaptation Network With Smooth Characteristic Function Analytical Scheduling for Selfishness Detection in OppNets Based on Differential Game UAV-Assisted MEC Architecture for Collaborative Task Offloading in Urban IoT Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1