Sensory Substitution Device for Time Presentation: Spatial–Temporal Vibrotactile Encoding for Presenting Time on the Human Wrist

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Access Pub Date : 2025-03-05 DOI:10.1109/ACCESS.2025.3548552
Naqash Afzal;Irfan Hussain;Zejian Zhou;Domenico Prattichizzo;Lakmal Seneviratne;Yuru Zhang;Dangxiao Wang
{"title":"Sensory Substitution Device for Time Presentation: Spatial–Temporal Vibrotactile Encoding for Presenting Time on the Human Wrist","authors":"Naqash Afzal;Irfan Hussain;Zejian Zhou;Domenico Prattichizzo;Lakmal Seneviratne;Yuru Zhang;Dangxiao Wang","doi":"10.1109/ACCESS.2025.3548552","DOIUrl":null,"url":null,"abstract":"Presenting information privately such as alertness levels and time on the wrist via vibrotactile feedback proves invaluable for visually impaired individuals. Additionally, in situations where the visual channel is occupied, this serves as a discreet solution for sighted users, allowing them to stay informed during meetings or tasks without the need to overtly check their watches, thus minimizing potential distractions. However, it is a challenging task to present time accurately and efficiently to the users using vibrotactile modality due to the perceptual limits of human’s haptic channel. Inspired by the metaphors of mechanical and digital watches that have been widely used in our daily lives, we proposed two novel spatial-temporal vibrotactile encoding strategies. By varying the location, number, and duration of the vibrotactile stimuli, these strategies are capable of presenting the exact information about the current time through a series of encoded tactile cues. A physical prototype was developed and fifteen participants were recruited to evaluate the two solutions. Two experiments were performed to evaluate the two encoding strategies. The results showed that the mechanical and digital encoding strategies achieved an average correct rate of <inline-formula> <tex-math>$90.55 \\pm 5.2\\%$ </tex-math></inline-formula> and <inline-formula> <tex-math>$95.22 \\pm 4.1\\%$ </tex-math></inline-formula> during the focused state, and <inline-formula> <tex-math>$95.28 \\pm 3.3\\%$ </tex-math></inline-formula> and <inline-formula> <tex-math>$97.78 \\pm 3.8\\%$ </tex-math></inline-formula> during the distracted state, respectively <inline-formula> <tex-math>$(mean \\pm SD)$ </tex-math></inline-formula>. Experimental results provide deep insights into utilizing the spatial-temporal patterns of vibrotactile stimuli for developing industrial-scale wearable haptic devices to present time and quantitative information efficiently and privately to the users.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"44385-44402"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10912496","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10912496/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Presenting information privately such as alertness levels and time on the wrist via vibrotactile feedback proves invaluable for visually impaired individuals. Additionally, in situations where the visual channel is occupied, this serves as a discreet solution for sighted users, allowing them to stay informed during meetings or tasks without the need to overtly check their watches, thus minimizing potential distractions. However, it is a challenging task to present time accurately and efficiently to the users using vibrotactile modality due to the perceptual limits of human’s haptic channel. Inspired by the metaphors of mechanical and digital watches that have been widely used in our daily lives, we proposed two novel spatial-temporal vibrotactile encoding strategies. By varying the location, number, and duration of the vibrotactile stimuli, these strategies are capable of presenting the exact information about the current time through a series of encoded tactile cues. A physical prototype was developed and fifteen participants were recruited to evaluate the two solutions. Two experiments were performed to evaluate the two encoding strategies. The results showed that the mechanical and digital encoding strategies achieved an average correct rate of $90.55 \pm 5.2\%$ and $95.22 \pm 4.1\%$ during the focused state, and $95.28 \pm 3.3\%$ and $97.78 \pm 3.8\%$ during the distracted state, respectively $(mean \pm SD)$ . Experimental results provide deep insights into utilizing the spatial-temporal patterns of vibrotactile stimuli for developing industrial-scale wearable haptic devices to present time and quantitative information efficiently and privately to the users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过振动触觉反馈在手腕上私下显示警觉程度和时间等信息,对视障人士来说非常有价值。此外,在视觉通道被占用的情况下,这对视力正常的用户来说也是一种隐蔽的解决方案,使他们能够在会议或执行任务时随时了解信息,而无需明显地查看手表,从而最大限度地减少潜在的干扰。然而,由于人类触觉通道的感知能力有限,要利用振动触觉模式准确有效地向用户显示时间是一项具有挑战性的任务。受日常生活中广泛使用的机械表和电子表的启发,我们提出了两种新颖的时空振动触觉编码策略。通过改变振动触觉刺激的位置、数量和持续时间,这些策略能够通过一系列编码触觉线索来呈现当前时间的准确信息。我们开发了一个物理原型,并招募了 15 名参与者来评估这两种解决方案。为评估两种编码策略进行了两次实验。结果显示,机械编码策略和数字编码策略在专注状态下的平均正确率分别为90.55美元/分钟 5.2%和95.22美元/分钟 4.1%;在分心状态下的平均正确率分别为95.28美元/分钟 3.3%和97.78美元/分钟 3.8%。实验结果为利用振动触觉刺激的时空模式开发工业规模的可穿戴触觉设备提供了深刻的见解,这些设备可以高效、私密地向用户展示时间和定量信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
期刊最新文献
High-Performance NTRU Accelerator Using a Direct Memory Access Controller Corrections to “A Visual Prompt-Based Mobile Learning System for Improved Algebraic Understanding in Students With Learning Disabilities” Utility Meets Privacy: A Critical Evaluation of Tabular Data Synthesizers Minimizing Delay at Closely Spaced Signalized Intersections Through Green Time Ratio Optimization: A Hybrid Approach With K-Means Clustering and Genetic Algorithms Analysis and Design of mmWave Passive CMOS Circulators With Unequal Port Impedances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1