He Bai;Hui Li;Jianming Que;Abla Smahi;Minglong Zhang;Peter Han Joo Chong;Shuo-Yen Robert Li;Xiyu Wang;Ping Lu
{"title":"QSCCP: A QoS-Aware Congestion Control Protocol for Information-Centric Networking","authors":"He Bai;Hui Li;Jianming Que;Abla Smahi;Minglong Zhang;Peter Han Joo Chong;Shuo-Yen Robert Li;Xiyu Wang;Ping Lu","doi":"10.1109/TNSM.2024.3486052","DOIUrl":null,"url":null,"abstract":"Information-Centric Networking (ICN) is a promising future network architecture that shifts the host-based network paradigm to a content-oriented one. Over the past decade, numerous ICN congestion control (CC) schemes have been proposed, tailored to address congestion issues based on ICN’s transmission characteristics. However, several key challenges still need to be addressed. One critical issue is that most existing CC studies for ICN do not consider the diverse Quality of Service (QoS) requirements of modern network applications. This limitation hinders their applicability across various applications with different network performance preferences. Another ongoing challenge lies in improving transmission performance, particularly considering how to appropriately coordinate congestion control participants to enhance content retrieval efficiency and ensure reasonable resource allocation, especially in multipath scenarios. To tackle these challenges, we propose QSCCP, a QoS-aware congestion control protocol built upon NDN (Named Data Networking), a well-known ICN architecture. In QSCCP, diverse QoS preferences of various traffic are supported within a collaborative congestion control framework. A novel multi-level, class-based scheduling and forwarding mechanism is designed to ensure varied and fine-grained QoS guarantees. A distributed congestion notification and precise feedback mechanism is also provided, which efficiently collaborates with an adaptive multipath forwarding strategy and consumer rate adjustment to rationally allocate network resources and improve transmission efficiency, particularly in multipath scenarios. Extensive experimental results demonstrate that QSCCP satisfies diverse QoS requirements while achieving outstanding transmission performance. It outperforms existing schemes in throughput, fairness, delay, and packet loss, with a rapid convergence rate and excellent stability.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 1","pages":"532-556"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10734406/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Information-Centric Networking (ICN) is a promising future network architecture that shifts the host-based network paradigm to a content-oriented one. Over the past decade, numerous ICN congestion control (CC) schemes have been proposed, tailored to address congestion issues based on ICN’s transmission characteristics. However, several key challenges still need to be addressed. One critical issue is that most existing CC studies for ICN do not consider the diverse Quality of Service (QoS) requirements of modern network applications. This limitation hinders their applicability across various applications with different network performance preferences. Another ongoing challenge lies in improving transmission performance, particularly considering how to appropriately coordinate congestion control participants to enhance content retrieval efficiency and ensure reasonable resource allocation, especially in multipath scenarios. To tackle these challenges, we propose QSCCP, a QoS-aware congestion control protocol built upon NDN (Named Data Networking), a well-known ICN architecture. In QSCCP, diverse QoS preferences of various traffic are supported within a collaborative congestion control framework. A novel multi-level, class-based scheduling and forwarding mechanism is designed to ensure varied and fine-grained QoS guarantees. A distributed congestion notification and precise feedback mechanism is also provided, which efficiently collaborates with an adaptive multipath forwarding strategy and consumer rate adjustment to rationally allocate network resources and improve transmission efficiency, particularly in multipath scenarios. Extensive experimental results demonstrate that QSCCP satisfies diverse QoS requirements while achieving outstanding transmission performance. It outperforms existing schemes in throughput, fairness, delay, and packet loss, with a rapid convergence rate and excellent stability.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.