{"title":"Lab-on-a-chip device for microfluidic trapping and TIRF imaging of single cells","authors":"Dustin Dzikonski, Riccardo Zamboni, Aniket Bandyopadhyay, Deepthi Paul, Roland Wedlich-Söldner, Cornelia Denz, Jörg Imbrock","doi":"10.1007/s10544-025-00739-0","DOIUrl":null,"url":null,"abstract":"<p>Total internal reflection fluorescence (TIRF) microscopy is a powerful imaging technique that visualizes the outer surface of specimens in close proximity to a substrate, yielding crucial insights in cell membrane compositions. TIRF plays a key role in single-cell studies but typically requires chemical fixation to ensure direct contact between the cell membrane and substrate, which can compromise cell viability and promote clustering. In this study, we present a microfluidic device with structures designed to trap single yeast cells and fix them in direct contact with the substrate surface to enable TIRF measurements on the cell membrane. The traps are fabricated using two-photon polymerization, allowing high-resolution printing of intricate structures that encapsulate cells in all three dimensions while maintaining exposure to the flow within the device. Our adaptable trap design allows us to reduce residual movement of trapped cells to a minimum while maintaining high trapping efficiencies. We identify the optimal structure configuration to trap single yeast cells and demonstrate that trapping efficiency can be tuned by modifying cell concentration and injection methods. Additionally, by replicating the cell trap design with soft hydrogel materials, we demonstrate the potential of our approach for further single-cell studies. The authors have no relevant financial or non-financial interests to disclose and no competing interests to declare.</p>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-025-00739-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00739-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Total internal reflection fluorescence (TIRF) microscopy is a powerful imaging technique that visualizes the outer surface of specimens in close proximity to a substrate, yielding crucial insights in cell membrane compositions. TIRF plays a key role in single-cell studies but typically requires chemical fixation to ensure direct contact between the cell membrane and substrate, which can compromise cell viability and promote clustering. In this study, we present a microfluidic device with structures designed to trap single yeast cells and fix them in direct contact with the substrate surface to enable TIRF measurements on the cell membrane. The traps are fabricated using two-photon polymerization, allowing high-resolution printing of intricate structures that encapsulate cells in all three dimensions while maintaining exposure to the flow within the device. Our adaptable trap design allows us to reduce residual movement of trapped cells to a minimum while maintaining high trapping efficiencies. We identify the optimal structure configuration to trap single yeast cells and demonstrate that trapping efficiency can be tuned by modifying cell concentration and injection methods. Additionally, by replicating the cell trap design with soft hydrogel materials, we demonstrate the potential of our approach for further single-cell studies. The authors have no relevant financial or non-financial interests to disclose and no competing interests to declare.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.