Point Cloud Structural Similarity-Based Underwater Sonar Loop Detection

IF 5.3 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2025-03-03 DOI:10.1109/LRA.2025.3547304
Donghwi Jung;Andres Pulido;Jane Shin;Seong-Woo Kim
{"title":"Point Cloud Structural Similarity-Based Underwater Sonar Loop Detection","authors":"Donghwi Jung;Andres Pulido;Jane Shin;Seong-Woo Kim","doi":"10.1109/LRA.2025.3547304","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a point cloud structural similarity-based loop detection method for underwater Simultaneous Localization and Mapping using sonar sensors. Existing sonar-based loop detection approaches often rely on 2D projection and keypoint extraction, which can lead to data loss and poor performance in feature-scarce environments. Additionally, methods based on neural networks or Bag-of-Words require extensive preprocessing, such as model training or vocabulary creation, reducing adaptability to new environments. To address these challenges, our method directly utilizes 3D sonar point clouds without projection and computes point-wise structural feature maps based on geometry, normals, and curvature. By leveraging rotation-invariant similarity comparisons, the proposed approach eliminates the need for keypoint detection and ensures robust loop detection across diverse underwater terrains. We validate our method using two real-world datasets: the Antarctica dataset obtained from deep underwater and the Seaward dataset collected from rivers and lakes. Experimental results show that our method achieves the highest loop detection performance compared to existing keypoint-based and learning-based approaches while requiring no additional training or preprocessing.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 4","pages":"3859-3866"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908830/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose a point cloud structural similarity-based loop detection method for underwater Simultaneous Localization and Mapping using sonar sensors. Existing sonar-based loop detection approaches often rely on 2D projection and keypoint extraction, which can lead to data loss and poor performance in feature-scarce environments. Additionally, methods based on neural networks or Bag-of-Words require extensive preprocessing, such as model training or vocabulary creation, reducing adaptability to new environments. To address these challenges, our method directly utilizes 3D sonar point clouds without projection and computes point-wise structural feature maps based on geometry, normals, and curvature. By leveraging rotation-invariant similarity comparisons, the proposed approach eliminates the need for keypoint detection and ensures robust loop detection across diverse underwater terrains. We validate our method using two real-world datasets: the Antarctica dataset obtained from deep underwater and the Seaward dataset collected from rivers and lakes. Experimental results show that our method achieves the highest loop detection performance compared to existing keypoint-based and learning-based approaches while requiring no additional training or preprocessing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于点云结构相似性的水下声纳环路探测
在本文中,我们提出了一种基于点云结构相似性的环检测方法,用于利用声纳传感器进行水下同步定位和测绘。现有的基于声纳的环路检测方法通常依赖于2D投影和关键点提取,这可能导致数据丢失,并且在特征稀缺的环境中性能不佳。此外,基于神经网络或词袋的方法需要大量的预处理,如模型训练或词汇创建,降低了对新环境的适应性。为了解决这些问题,我们的方法直接利用3D声纳点云,无需投影,并根据几何、法线和曲率计算点向结构特征图。通过利用旋转不变的相似性比较,所提出的方法消除了关键点检测的需要,并确保在不同的水下地形中进行鲁棒的环路检测。我们使用两个真实世界的数据集验证了我们的方法:从深海获得的南极洲数据集和从河流和湖泊收集的向海数据集。实验结果表明,与现有的基于关键点和基于学习的方法相比,我们的方法在不需要额外训练或预处理的情况下实现了最高的环路检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Design and Actuation of a Multipole Ring Magnet for Navigating Endovascular Magnetic Instruments Online Modifications of High-Level Swarm Behaviors A Robust and Efficient Visual-Inertial SLAM Using Hybrid Point-Line Features Autonomous Robotic Bone Micro-Milling System With Automatic Calibration and 3D Surface Fitting Data-Efficient Constrained Robot Learning With Probabilistic Lagrangian Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1