Fabiano Bhering, Debora Oliveira, Célio Albuquerque, Diego Passos, Katia Obraczka
{"title":"An Adaptive Routing Architecture for IoT Multipath Video Transmission","authors":"Fabiano Bhering, Debora Oliveira, Célio Albuquerque, Diego Passos, Katia Obraczka","doi":"10.1002/nem.70013","DOIUrl":null,"url":null,"abstract":"<p>Video applications in wireless multihop Internet of Things (IoT) scenarios can benefit from multipath routing strategies to meet their often stringent quality of service (QoS) requirements. However, the dynamics of the underlying network and video service requirements call for a multipath routing fabric that can dynamically adapt to changing conditions. In this paper, we present a wireless multipath routing architecture that is able to adapt to varying network topology conditions and video traffic characteristics by finding new paths dynamically, resulting in enhanced end user's quality of experience. Additionally, we provide an overview of the IoT wireless video application landscape and a taxonomy of the state-of-the-art in route selection mechanisms for multipath routing.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"35 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nem.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.70013","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Video applications in wireless multihop Internet of Things (IoT) scenarios can benefit from multipath routing strategies to meet their often stringent quality of service (QoS) requirements. However, the dynamics of the underlying network and video service requirements call for a multipath routing fabric that can dynamically adapt to changing conditions. In this paper, we present a wireless multipath routing architecture that is able to adapt to varying network topology conditions and video traffic characteristics by finding new paths dynamically, resulting in enhanced end user's quality of experience. Additionally, we provide an overview of the IoT wireless video application landscape and a taxonomy of the state-of-the-art in route selection mechanisms for multipath routing.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.