Molecular Generation for CNS Drug Discovery and Design.

IF 3.9 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2025-04-02 Epub Date: 2025-03-13 DOI:10.1021/acschemneuro.5c00095
Shengneng Chen, Ding Luo, Weiwei Xue
{"title":"Molecular Generation for CNS Drug Discovery and Design.","authors":"Shengneng Chen, Ding Luo, Weiwei Xue","doi":"10.1021/acschemneuro.5c00095","DOIUrl":null,"url":null,"abstract":"<p><p>Computational drug design is a rapidly evolving field, especially the latest breakthroughs in generative artificial intelligence (GenAI) to create new compounds. However, the potential of GenAI to address the challenges in designing central nervous system (CNS) drugs that can effectively cross the blood-brain barrier (BBB) and engage their targets remains largely unexplored. The integration of GenAI techniques with experimental data sets and advanced evaluation metrics provides a unique opportunity to enhance CNS drug discovery. In this viewpoint, we will introduce the definition of CNS drug-like properties and data resources in CNS drug discovery, highlighting the need to train specialized GenAI models aimed at designing novel CNS drug candidates by efficiently exploring the CNS drug-like space.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"1247-1250"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00095","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Computational drug design is a rapidly evolving field, especially the latest breakthroughs in generative artificial intelligence (GenAI) to create new compounds. However, the potential of GenAI to address the challenges in designing central nervous system (CNS) drugs that can effectively cross the blood-brain barrier (BBB) and engage their targets remains largely unexplored. The integration of GenAI techniques with experimental data sets and advanced evaluation metrics provides a unique opportunity to enhance CNS drug discovery. In this viewpoint, we will introduce the definition of CNS drug-like properties and data resources in CNS drug discovery, highlighting the need to train specialized GenAI models aimed at designing novel CNS drug candidates by efficiently exploring the CNS drug-like space.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中枢神经系统药物发现与设计的分子生成。
计算药物设计是一个快速发展的领域,尤其是在生成式人工智能(GenAI)创造新化合物方面的最新突破。然而,GenAI在解决设计中枢神经系统(CNS)药物的挑战方面的潜力,这些药物可以有效地穿过血脑屏障(BBB)并参与其靶点,在很大程度上仍未被探索。GenAI技术与实验数据集和先进的评估指标的整合为增强中枢神经系统药物发现提供了独特的机会。在这个观点下,我们将介绍中枢神经系统药物特性的定义和中枢神经系统药物发现中的数据资源,强调需要训练专门的GenAI模型,旨在通过有效地探索中枢神经系统药物空间来设计新的中枢神经系统候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Synergistic Effect of Mutations in the Amyloidogenic Core of Human Amylin (hAM) Affords a New Potent Inhibitor of hAM Fibrillation: Computational Design and Experimental Validation. Assessing the Multitarget Therapeutic Potential of Novel 9-Aminoacridine Derivatives for Alzheimer's Disease. Santonin Attenuates Alzheimer's-Like Pathology via Multitarget Modulation of the NLRP3 Inflammasome, BDNF Signaling, and Amyloidogenic Pathways: An Integrated Experimental and Computational Study. Comprehensive Analysis of Autophagy-Related Gene Profiles and Immune Characteristics in Parkinson's Disease. Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1