Huan-Huan Liu, Fan Yang, Lei Zhang, Xiao-Lu Zhang, Ning Zhao, Zhen-Ye Zhang, Jia-Bin Zhou, Tian-Peng Wei, Ling-Ling Qian, Li-Gang Ding, Ru-Xing Wang
{"title":"Decreased PLK2 promotes atrial fibrillation in diabetic mice through Nrf2/HO-1 pathway.","authors":"Huan-Huan Liu, Fan Yang, Lei Zhang, Xiao-Lu Zhang, Ning Zhao, Zhen-Ye Zhang, Jia-Bin Zhou, Tian-Peng Wei, Ling-Ling Qian, Li-Gang Ding, Ru-Xing Wang","doi":"10.1007/s00592-025-02480-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type 2 diabetes mellitus (T2DM) is associated with an increased incidence of atrial fibrillation (AF). However, the exact mechanisms involved have not yet been fully elucidated. Dysregulation of cardiac potassium channels can trigger AF. This study aimed to investigate the mechanisms of abnormal expression of atrial potassium channel proteins Kv1.5, Kv4.2, and Kv4.3 in type 2 diabetic mice.</p><p><strong>Methods: </strong>The db/db mice and their control littermates were set as the T2DM group and the control (Con) group. Acetylcholine-calcium chloride was injected via the tail veins to induce AF. HL-1 cells were cultured with normal or high-glucose medium and treated with or without Dimethyl Fumarate (DMF) or hemin in vitro. The expression and cellular localization of proteins were evaluated by western blotting and immunofluorescence.</p><p><strong>Results: </strong>The results showed that high glucose impaired the expression of Kv1.5, Kv4.2 and Kv4.3 proteins both in vivo and in vitro, in parallel with a significant down-regulation of polo-like kinase 2 (PLK2), nuclear factor erythroid 2-related factor 2 (Nrf2), p-Nrf2 and heme oxygenase-1 (HO-1) proteins. Moreover, immunofluorescence revealed that both high glucose and PLK2 knockdown could result in reduced Nrf2 and p-Nrf2 expression and subsequent nuclear translocation. While overexpression of PLK2, treatment with DMF, an agonist of Nrf2, or hemin, an inducer of HO-1, could restore the reduction of Kv1.5, Kv4.2 and Kv4.3 proteins caused by high glucose.</p><p><strong>Conclusion: </strong>Diabetes reduces the expression of Kv1.5, Kv4.2 and Kv4.3 proteins in atrial cells through inhibition of PLK2/Nrf2/HO-1 pathway, thereby leading to the increased susceptibility to AF in T2DM.</p>","PeriodicalId":6921,"journal":{"name":"Acta Diabetologica","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Diabetologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00592-025-02480-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Type 2 diabetes mellitus (T2DM) is associated with an increased incidence of atrial fibrillation (AF). However, the exact mechanisms involved have not yet been fully elucidated. Dysregulation of cardiac potassium channels can trigger AF. This study aimed to investigate the mechanisms of abnormal expression of atrial potassium channel proteins Kv1.5, Kv4.2, and Kv4.3 in type 2 diabetic mice.
Methods: The db/db mice and their control littermates were set as the T2DM group and the control (Con) group. Acetylcholine-calcium chloride was injected via the tail veins to induce AF. HL-1 cells were cultured with normal or high-glucose medium and treated with or without Dimethyl Fumarate (DMF) or hemin in vitro. The expression and cellular localization of proteins were evaluated by western blotting and immunofluorescence.
Results: The results showed that high glucose impaired the expression of Kv1.5, Kv4.2 and Kv4.3 proteins both in vivo and in vitro, in parallel with a significant down-regulation of polo-like kinase 2 (PLK2), nuclear factor erythroid 2-related factor 2 (Nrf2), p-Nrf2 and heme oxygenase-1 (HO-1) proteins. Moreover, immunofluorescence revealed that both high glucose and PLK2 knockdown could result in reduced Nrf2 and p-Nrf2 expression and subsequent nuclear translocation. While overexpression of PLK2, treatment with DMF, an agonist of Nrf2, or hemin, an inducer of HO-1, could restore the reduction of Kv1.5, Kv4.2 and Kv4.3 proteins caused by high glucose.
Conclusion: Diabetes reduces the expression of Kv1.5, Kv4.2 and Kv4.3 proteins in atrial cells through inhibition of PLK2/Nrf2/HO-1 pathway, thereby leading to the increased susceptibility to AF in T2DM.
期刊介绍:
Acta Diabetologica is a journal that publishes reports of experimental and clinical research on diabetes mellitus and related metabolic diseases. Original contributions on biochemical, physiological, pathophysiological and clinical aspects of research on diabetes and metabolic diseases are welcome. Reports are published in the form of original articles, short communications and letters to the editor. Invited reviews and editorials are also published. A Methodology forum, which publishes contributions on methodological aspects of diabetes in vivo and in vitro, is also available. The Editor-in-chief will be pleased to consider articles describing new techniques (e.g., new transplantation methods, metabolic models), of innovative importance in the field of diabetes/metabolism. Finally, workshop reports are also welcome in Acta Diabetologica.