Real-Time Mapping of Polymer Film Thickness Using Near-Infrared Hyperspectral Imaging.

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Applied Spectroscopy Pub Date : 2025-03-13 DOI:10.1177/00037028251323634
Xiaoyun Chen, Jin Wang, Christopher Thurber, Matthew Benedict, Kurt Olson, Eric Marchbanks, Hyunwoo Kim, Michael Bishop
{"title":"Real-Time Mapping of Polymer Film Thickness Using Near-Infrared Hyperspectral Imaging.","authors":"Xiaoyun Chen, Jin Wang, Christopher Thurber, Matthew Benedict, Kurt Olson, Eric Marchbanks, Hyunwoo Kim, Michael Bishop","doi":"10.1177/00037028251323634","DOIUrl":null,"url":null,"abstract":"<p><p>A new method based on near-infrared (NIR) hyperspectral imaging (HSI) has been developed for online polymer film thickness mapping. Traditional online methods, including X-ray, capacitance, and physical gauging (micrometers), can only determine film thickness for a point with each measurement. The NIR-HIS method allows the determination of film thickness for a line based on each image, thus enabling true real-time two-dimensional (2D) mapping of film thickness as the film translates in front of the instrument. A Specim NIR camera, 1000-2500 nm, 384 (spatial) × 288 (spatial) pixels, was used in this study for various low-density polyethylene (LDPE), and high-density polyethylene (HDPE) films. Sample thickness between μm to mm can be mapped based on the myriad NIR absorbance bands with various molar absorptivity. The 2310 nm NIR peak was found to be the most effective feature for determining film thickness over the range of polyethylene film studied in this project: 10∼100 μm. A good correlation was found between the 2310 nm absorbance and the incumbent X-ray thickness scanner results. Interference fringes were found to be a potential source of error for quantitative analysis of thin films, and a classical least squares (CLS) analysis was found to be effective in removing fringes. This method was implemented to map out film thickness in real-time in an industrial blown film process.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251323634"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251323634","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

A new method based on near-infrared (NIR) hyperspectral imaging (HSI) has been developed for online polymer film thickness mapping. Traditional online methods, including X-ray, capacitance, and physical gauging (micrometers), can only determine film thickness for a point with each measurement. The NIR-HIS method allows the determination of film thickness for a line based on each image, thus enabling true real-time two-dimensional (2D) mapping of film thickness as the film translates in front of the instrument. A Specim NIR camera, 1000-2500 nm, 384 (spatial) × 288 (spatial) pixels, was used in this study for various low-density polyethylene (LDPE), and high-density polyethylene (HDPE) films. Sample thickness between μm to mm can be mapped based on the myriad NIR absorbance bands with various molar absorptivity. The 2310 nm NIR peak was found to be the most effective feature for determining film thickness over the range of polyethylene film studied in this project: 10∼100 μm. A good correlation was found between the 2310 nm absorbance and the incumbent X-ray thickness scanner results. Interference fringes were found to be a potential source of error for quantitative analysis of thin films, and a classical least squares (CLS) analysis was found to be effective in removing fringes. This method was implemented to map out film thickness in real-time in an industrial blown film process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
期刊最新文献
Analysis of the Fossilization Processes of Vicarya callosa japonica Shells Using Raman Micro-Mapping Combined with Principal Component Analysis and Partial Least Squares Regression. Confocal Raman Microscopy as a Probe of Material Deconstruction in Processed Low-Density Polyethylene Particles. Prominent Composition-Dependent Dynamics Decoupling in the Choline Chloride-Glycerol Deep Eutectic Solvent System. Real-Time Mapping of Polymer Film Thickness Using Near-Infrared Hyperspectral Imaging. Visualizing Molybdenum Pentachloride Flow During Vapor Deposition Processes Using Absorption Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1