Mingyu Zhang, Mengjing Li, Hanzhen Li, Yanling Wan, Shuang Yang, Shuhui Ji, Haobo Zhang, Chao Liu, Gang Lu, Xiaohua Jiang, Hongbin Liu
{"title":"Dysregulation of N-glycosylation by <i>Rpn1</i> knockout in spermatocytes induces male infertility via endoplasmic reticulum stress in mice.","authors":"Mingyu Zhang, Mengjing Li, Hanzhen Li, Yanling Wan, Shuang Yang, Shuhui Ji, Haobo Zhang, Chao Liu, Gang Lu, Xiaohua Jiang, Hongbin Liu","doi":"10.7150/ijbs.106468","DOIUrl":null,"url":null,"abstract":"<p><p>N-glycosylation protein modification plays a crucial regulatory role in numerous biological processes, although their contribution to male reproduction in mammals remains largely undefined. Here, we found that Ribophorin I (RPN1), a subunit of oligosaccharyltransferase complex, is indispensable for spermatogenesis in male germ cells. Germ cell-specific <i>Rpn1</i> knockout results in significant inhibition of the progression of meiosis, consequently disrupting homologous chromosome pairing, meiotic recombination, and DNA double strand breaks repair during meiosis. N-glycoproteomic profiling revealed that glycosylation levels are reduced in endoplasmic reticulum-associated proteins, while functional analyses showed that <i>Rpn1</i> deficiency could inhibit endoplasmic reticulum function and trigger endoplasmic reticulum stress during meiosis and increasing apoptosis levels in mice. These findings highlight the essential physiological functions of N-glycosylation modification in male spermatogenesis and expand our understanding of its role in male fertility.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"21 5","pages":"2360-2379"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7150/ijbs.106468","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
N-glycosylation protein modification plays a crucial regulatory role in numerous biological processes, although their contribution to male reproduction in mammals remains largely undefined. Here, we found that Ribophorin I (RPN1), a subunit of oligosaccharyltransferase complex, is indispensable for spermatogenesis in male germ cells. Germ cell-specific Rpn1 knockout results in significant inhibition of the progression of meiosis, consequently disrupting homologous chromosome pairing, meiotic recombination, and DNA double strand breaks repair during meiosis. N-glycoproteomic profiling revealed that glycosylation levels are reduced in endoplasmic reticulum-associated proteins, while functional analyses showed that Rpn1 deficiency could inhibit endoplasmic reticulum function and trigger endoplasmic reticulum stress during meiosis and increasing apoptosis levels in mice. These findings highlight the essential physiological functions of N-glycosylation modification in male spermatogenesis and expand our understanding of its role in male fertility.
n -糖基化蛋白修饰在许多生物过程中起着至关重要的调节作用,尽管它们对哺乳动物雄性生殖的贡献在很大程度上仍不清楚。在这里,我们发现核糖素I (RPN1)是寡糖转移酶复合体的一个亚基,在男性生殖细胞的精子发生中是必不可少的。生殖细胞特异性Rpn1敲除可显著抑制减数分裂的进程,从而破坏减数分裂过程中的同源染色体配对、减数分裂重组和DNA双链断裂修复。n -糖蛋白组学分析显示,内质网相关蛋白的糖基化水平降低,而功能分析显示,Rpn1缺乏可以抑制内质网功能,并在小鼠减数分裂期间触发内质网应激,增加凋亡水平。这些发现强调了n -糖基化修饰在男性精子发生中的重要生理功能,并扩大了我们对其在男性生育能力中的作用的理解。
期刊介绍:
The International Journal of Biological Sciences is a peer-reviewed, open-access scientific journal published by Ivyspring International Publisher. It dedicates itself to publishing original articles, reviews, and short research communications across all domains of biological sciences.