Model observers and detectability index in x-ray imaging: historical review, applications and future trends.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-03-13 DOI:10.1088/1361-6560/adc070
Elsa Bifano Pimenta, Paulo Roberto R Costa
{"title":"Model observers and detectability index in x-ray imaging: historical review, applications and future trends.","authors":"Elsa Bifano Pimenta, Paulo Roberto R Costa","doi":"10.1088/1361-6560/adc070","DOIUrl":null,"url":null,"abstract":"<p><p>The detectability index, originally developed in psychophysics, has been applied in medical imaging to integrate objective metrics with subjective assessments. This index accounts for both image processing properties and the limitations of the human visual system, thus enhancing the clinical efficacy of imaging technologies. By providing a single metric that captures multiple aspects of image quality, the detectability index offers a comprehensive evaluation of clinical images. Numerous applications of this index across various areas of medical imaging are documented in the literature, along with recommendations for its use in periodic performance evaluations of imaging devices. However, since different modalities of images may require different detectability indices, it is crucial to assess the adequacy of the properties of the image being analyzed and those from the adopted index. A thorough understanding of this metric, including its statistical nature and complex relationship with model observers, is essential to ensure its proper application and interpretation, and to prevent misuse. Medical physicists face the challenge of a lack of organized guidance on the detectability index, necessitating a comprehensive review of its merits and drawbacks. This paper aims to trace the origins, concepts, and clinical applications of the detectability index, offering insight into its strengths, limitations, and future potential. To achieve this, an extensive literature review was conducted, covering the evolution of the index from its early use in radar interpretation to its current applications in modern imaging techniques and future trends. The paper includes supplementary materials such as a compendium of fundamental concepts, ancillary information, and mathematical deductions to help readers less experienced in the subject.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adc070","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The detectability index, originally developed in psychophysics, has been applied in medical imaging to integrate objective metrics with subjective assessments. This index accounts for both image processing properties and the limitations of the human visual system, thus enhancing the clinical efficacy of imaging technologies. By providing a single metric that captures multiple aspects of image quality, the detectability index offers a comprehensive evaluation of clinical images. Numerous applications of this index across various areas of medical imaging are documented in the literature, along with recommendations for its use in periodic performance evaluations of imaging devices. However, since different modalities of images may require different detectability indices, it is crucial to assess the adequacy of the properties of the image being analyzed and those from the adopted index. A thorough understanding of this metric, including its statistical nature and complex relationship with model observers, is essential to ensure its proper application and interpretation, and to prevent misuse. Medical physicists face the challenge of a lack of organized guidance on the detectability index, necessitating a comprehensive review of its merits and drawbacks. This paper aims to trace the origins, concepts, and clinical applications of the detectability index, offering insight into its strengths, limitations, and future potential. To achieve this, an extensive literature review was conducted, covering the evolution of the index from its early use in radar interpretation to its current applications in modern imaging techniques and future trends. The paper includes supplementary materials such as a compendium of fundamental concepts, ancillary information, and mathematical deductions to help readers less experienced in the subject.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Role of modeled high-grade glioma cell invasion and survival on the prediction of tumor progression after radiotherapy. Development and dosimetric evaluation of a modulated intraoperative radiotherapy (mIORT) system using the Zeiss intrabeam device. Model observers and detectability index in x-ray imaging: historical review, applications and future trends. IPEM code of practice for proton therapy dosimetry based on the NPL primary standard proton calorimeter calibration service. 3Dπ: three-dimensional positron imaging, a novel total-body PET scanner using xenon-doped liquid argon scintillator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1