Farman Ali, Abdullah Almuhaimeed, Wajdi Alghamdi, Haya Aldossary, Othman Asiry, Atef Masmoudi
{"title":"Leveraging deep learning for epigenetic protein prediction: a novel approach for early lung cancer diagnosis and drug discovery.","authors":"Farman Ali, Abdullah Almuhaimeed, Wajdi Alghamdi, Haya Aldossary, Othman Asiry, Atef Masmoudi","doi":"10.1007/s13755-025-00347-5","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic protein (EP) plays a crucial role in influencing disease development, controlling gene expression, and shaping cell identity. They hold potential as targets for future therapies, and studying their mechanisms can lead to improved diagnosis and treatment strategies for various diseases. Anticipating EP is imperative, yet conventional experimental approaches for prediction prove time-intensive and expensive. This work constructed CNN-BiLSTM, computational method for identification of EP prediction. Utilizing primary sequences, two datasets were constructed, and an amphiphilic pseudo amino acid, group dipeptide composition and group amino acid composition were devised to extract numerical features. Model training incorporated a suite of deep learning architectures, including BiLSTM, GRU, and CNN. Notably, an ensemble model combining CNN and BiLSTM, trained using AmpPseAAC features, demonstrated superior performance across both training and testing datasets compared to other predictors. This research contributes to the ongoing efforts to revolutionize therapeutic approaches by facilitating the identification of novel drug targets and improving disease treatment outcomes.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"13 1","pages":"28"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-025-00347-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Epigenetic protein (EP) plays a crucial role in influencing disease development, controlling gene expression, and shaping cell identity. They hold potential as targets for future therapies, and studying their mechanisms can lead to improved diagnosis and treatment strategies for various diseases. Anticipating EP is imperative, yet conventional experimental approaches for prediction prove time-intensive and expensive. This work constructed CNN-BiLSTM, computational method for identification of EP prediction. Utilizing primary sequences, two datasets were constructed, and an amphiphilic pseudo amino acid, group dipeptide composition and group amino acid composition were devised to extract numerical features. Model training incorporated a suite of deep learning architectures, including BiLSTM, GRU, and CNN. Notably, an ensemble model combining CNN and BiLSTM, trained using AmpPseAAC features, demonstrated superior performance across both training and testing datasets compared to other predictors. This research contributes to the ongoing efforts to revolutionize therapeutic approaches by facilitating the identification of novel drug targets and improving disease treatment outcomes.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.