On a Reparameterization of the MC-DINA Model.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2025-03-11 DOI:10.1177/01466216251324938
Lawrence T DeCarlo
{"title":"On a Reparameterization of the MC-DINA Model.","authors":"Lawrence T DeCarlo","doi":"10.1177/01466216251324938","DOIUrl":null,"url":null,"abstract":"<p><p>The MC-DINA model is a cognitive diagnosis model (CDM) for multiple-choice items that was introduced by de la Torre (2009). The model extends the usual CDM in two basic ways: it allows for nominal responses instead of only dichotomous responses, and it allows skills to affect not only the choice of the correct response but also the choice of distractors. Here it is shown that the model can be re-expressed as a multinomial logit model with latent discrete predictors, that is, as a multinomial mixture model; a signal detection-like parameterization is also used. The reparameterization clarifies details about the structure and assumptions of the model, especially with respect to distractors, and helps to reveal parameter restrictions, which in turn have implications for psychological interpretations of the data and for issues with respect to statistical estimation. The approach suggests parsimonious models that are useful for practical applications, particularly for small sample sizes. The restrictions are shown to appear for items from the TIMSS 2007 fourth grade exam.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216251324938"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897991/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216251324938","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The MC-DINA model is a cognitive diagnosis model (CDM) for multiple-choice items that was introduced by de la Torre (2009). The model extends the usual CDM in two basic ways: it allows for nominal responses instead of only dichotomous responses, and it allows skills to affect not only the choice of the correct response but also the choice of distractors. Here it is shown that the model can be re-expressed as a multinomial logit model with latent discrete predictors, that is, as a multinomial mixture model; a signal detection-like parameterization is also used. The reparameterization clarifies details about the structure and assumptions of the model, especially with respect to distractors, and helps to reveal parameter restrictions, which in turn have implications for psychological interpretations of the data and for issues with respect to statistical estimation. The approach suggests parsimonious models that are useful for practical applications, particularly for small sample sizes. The restrictions are shown to appear for items from the TIMSS 2007 fourth grade exam.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
On a Reparameterization of the MC-DINA Model. Modeling Within- and Between-Person Differences in the Use of the Middle Category in Likert Scales. Weighted Answer Similarity Analysis. Impact of Parameter Predictability and Joint Modeling of Response Accuracy and Response Time on Ability Estimates. Few and Different: Detecting Examinees With Preknowledge Using Extended Isolation Forests.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1