Biocompatible nanozyme with dual catalytic activities for high-performance multimodality therapy against glioblastoma.

Guihong Lu, Xiaoyan Li, Wenfei Xu, Fan Zhang, Xiang Chen, Huibin Wu, Haibing Dai, Feng Li, Weidong Nie
{"title":"Biocompatible nanozyme with dual catalytic activities for high-performance multimodality therapy against glioblastoma.","authors":"Guihong Lu, Xiaoyan Li, Wenfei Xu, Fan Zhang, Xiang Chen, Huibin Wu, Haibing Dai, Feng Li, Weidong Nie","doi":"10.1088/1748-605X/adc05b","DOIUrl":null,"url":null,"abstract":"<p><p>Nanozymes based on metals have been regarded as a promising candidate in the metabolic reprogramming of low-survival, refractory glioblastoma multiforme (GBM). However, due to size limitations, nanozymes struggle to balance catalytic activity with the ability to cross the blood-brain barrier (BBB), limiting their efficiency in GBM therapy. Herein, we establish a hybrid nanocluster, AuMn NCs, by cross-linking ultrasmall nano-gold (Au) and manganese oxide (MnO<sub>2</sub>), which overcomes the size requirement conflict for integrating catalytic activities, long-period circulation, photothermal effect, glucose consumption, and chemodynamic effect for multimodality treatment against GBM. After administered intravenously, the overall large-size AuMn NCs can escape kidney filtration and cross the BBB for GBM accumulation. Then the individual ultrasmall nano-MnO<sub>2</sub>components effectively catalyze H<sub>2</sub>O<sub>2</sub>degradation as catalase to produce oxygen, which is utilized by individual ultrasmall nano-Au components to consume glucose as glucose oxidase for starvation therapy. The H<sub>2</sub>O<sub>2</sub>generated during Au-catalyzed glucose consumption further facilitates MnO<sub>2</sub>catalytic activity. Such positive feedback overwhelmingly intervenes in the glucose metabolism of GBM. Concurrently, clustered Au-induced photothermal effect and released Mn<sup>2+</sup>-induced chemodynamic effect further contribute to eliminating GBM cells. The versatile clustered nanozyme offers a feasible strategy for the multimodality intervention of GBM.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adc05b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanozymes based on metals have been regarded as a promising candidate in the metabolic reprogramming of low-survival, refractory glioblastoma multiforme (GBM). However, due to size limitations, nanozymes struggle to balance catalytic activity with the ability to cross the blood-brain barrier (BBB), limiting their efficiency in GBM therapy. Herein, we establish a hybrid nanocluster, AuMn NCs, by cross-linking ultrasmall nano-gold (Au) and manganese oxide (MnO2), which overcomes the size requirement conflict for integrating catalytic activities, long-period circulation, photothermal effect, glucose consumption, and chemodynamic effect for multimodality treatment against GBM. After administered intravenously, the overall large-size AuMn NCs can escape kidney filtration and cross the BBB for GBM accumulation. Then the individual ultrasmall nano-MnO2components effectively catalyze H2O2degradation as catalase to produce oxygen, which is utilized by individual ultrasmall nano-Au components to consume glucose as glucose oxidase for starvation therapy. The H2O2generated during Au-catalyzed glucose consumption further facilitates MnO2catalytic activity. Such positive feedback overwhelmingly intervenes in the glucose metabolism of GBM. Concurrently, clustered Au-induced photothermal effect and released Mn2+-induced chemodynamic effect further contribute to eliminating GBM cells. The versatile clustered nanozyme offers a feasible strategy for the multimodality intervention of GBM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有双重催化活性的生物相容性纳米酶,用于针对胶质母细胞瘤的高效多模式疗法。
基于金属的纳米酶被认为是低存活率、难治性多形性胶质母细胞瘤(GBM)代谢重编程的一个有前途的候选酶。然而,由于尺寸限制,纳米酶难以平衡催化活性与穿越血脑屏障(BBB)的能力,限制了它们在GBM治疗中的效率。本文通过超小纳米金(Au)和氧化锰(MnO2)的交联,建立了一种杂化簇状纳米酶(AM NCs),克服了在多模式治疗GBM中整合催化活性、长周期循环、光热效应和化学动力学效应的尺寸要求冲突。经静脉给药后,整体大尺寸AM NCs可以逃脱肾脏滤过并穿过血脑屏障,形成GBM。然后,单个超微纳米氧化锰(MnO2)组分作为过氧化氢酶有效催化H2O2降解产生氧气,并被单个超微纳米金(Au)组分作为葡萄糖氧化酶消耗葡萄糖。在au催化葡萄糖消耗过程中产生的H2O2进一步促进了MnO2的催化活性。这种正反馈压倒性地干预了GBM的葡萄糖代谢。同时,聚集的au诱导的光热效应和释放的Mn2+诱导的化学动力学效应进一步有助于消除GBM细胞。多功能簇状纳米酶为GBM的多模式干预提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
Hoechst 33342
索莱宝
methylene blue (MB)
索莱宝
Hoechst 33342
索莱宝
methylene blue (MB)
麦克林
Chloroauric acid trihydrate (HAuCl4)
麦克林
Chloroauric acid trihydrate (HAuCl4)
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanomangostin-loaded chitosan aerogel: a multifunctional biomaterial for hemostasis, anti-bacteria and wound healing. Multiple sessions magnetic fluid hyperthermia: a requisite for apoptosis in prostate cancer cells LNCaP. Hybrid additive manufacturing and data-guided design optimization for graded anterior cruciate ligament engineering. In vitro assessment of injectable alginate-based scaffolds functionalized with osteotropic drug-loaded bioactive glass. Enhanced anticancer activity of Naringenin-encapsulated poly (lactic acid)/Neem gum nanoparticles for breast cancer cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1