Xiaowu Fang, Longlong Xi, Minyan Wang, Jieshuai Xiao, Yue Zhao, Michael C. Willis, Zhuangzhi Shi
{"title":"Asymmetric reductive arylation and alkenylation to access S-chirogenic sulfinamides","authors":"Xiaowu Fang, Longlong Xi, Minyan Wang, Jieshuai Xiao, Yue Zhao, Michael C. Willis, Zhuangzhi Shi","doi":"10.1038/s41467-025-57471-9","DOIUrl":null,"url":null,"abstract":"<p>The study of the stereochemistry of organic sulfur compounds has been ongoing for over a century, with S-chirogenic pharmacophores playing an essential role in drug discovery within bioscience and medicinal chemistry. Traditionally, the synthesis of sulfinamides featuring stereogenic sulfur(IV) centers involves a complex, multistep process that often depends on chiral auxiliaries or kinetic resolution. Here, we introduce an effective and versatile method for synthesizing diverse classes of S-chirogenic sulfinamides through selective aryl and alkenyl addition to sulfinylamines. This process is catalysed by a chiral nickel or cobalt complex under reductive conditions, and eliminating the need for preformed organometallic reagents. The method facilitates the incorporation of a diverse array of aryl and alkenyl halides at the sulfur position, enabling their integration into various biologically significant sulfur pharmacophores. Our detailed mechanistic investigations and density functional theory calculations provide insights into the reaction pathway, particularly highlighting the enantiocontrol mode during addition process.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"39 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57471-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The study of the stereochemistry of organic sulfur compounds has been ongoing for over a century, with S-chirogenic pharmacophores playing an essential role in drug discovery within bioscience and medicinal chemistry. Traditionally, the synthesis of sulfinamides featuring stereogenic sulfur(IV) centers involves a complex, multistep process that often depends on chiral auxiliaries or kinetic resolution. Here, we introduce an effective and versatile method for synthesizing diverse classes of S-chirogenic sulfinamides through selective aryl and alkenyl addition to sulfinylamines. This process is catalysed by a chiral nickel or cobalt complex under reductive conditions, and eliminating the need for preformed organometallic reagents. The method facilitates the incorporation of a diverse array of aryl and alkenyl halides at the sulfur position, enabling their integration into various biologically significant sulfur pharmacophores. Our detailed mechanistic investigations and density functional theory calculations provide insights into the reaction pathway, particularly highlighting the enantiocontrol mode during addition process.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.