How to achieve accurate wildlife detection by using vehicle‐mounted mobile monitoring images and deep learning?

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Remote Sensing in Ecology and Conservation Pub Date : 2025-03-14 DOI:10.1002/rse2.70003
Leilei Shi, Jixi Gao, Fei Cao, Wenming Shen, Yue Wu, Kai Liu, Zheng Zhang
{"title":"How to achieve accurate wildlife detection by using vehicle‐mounted mobile monitoring images and deep learning?","authors":"Leilei Shi, Jixi Gao, Fei Cao, Wenming Shen, Yue Wu, Kai Liu, Zheng Zhang","doi":"10.1002/rse2.70003","DOIUrl":null,"url":null,"abstract":"With the advancement of artificial intelligence (AI) technologies, vehicle‐mounted mobile monitoring systems have become increasingly integrated into wildlife monitoring practices. However, images captured through these systems often present challenges such as low resolution, small target sizes, and partial occlusions. Consequently, detecting animal targets using conventional deep‐learning networks is challenging. To address these challenges, this paper presents an enhanced YOLOv7 model, referred to as YOLOv7(sr‐sm), which incorporates a super‐resolution (SR) reconstruction module and a small object optimization module. The YOLOv7(sr‐sm) model introduces a super‐resolution reconstruction module that leverages generative adversarial networks (GANs) to reconstruct high‐resolution details from blurry animal images. Additionally, an attention mechanism is integrated into the Neck and Head of YOLOv7 to form a small object optimization module, which enhances the model's ability to detect and locate densely packed small targets. Using a vehicle‐mounted mobile monitoring system, images of four wildlife taxa—sheep, birds, deer, and antelope —were captured on the Tibetan Plateau. These images were combined with publicly available high‐resolution wildlife photographs to create a wildlife test dataset. Experiments were conducted on this dataset, comparing the YOLOv7(sr‐sm) model with eight popular object detection models. The results demonstrate significant improvements in precision, recall, and mean Average Precision (mAP), with YOLOv7(sr‐sm) achieving 93.9%, 92.1%, and 92.3%, respectively. Furthermore, compared to the newly released YOLOv8l model, YOLOv7(sr‐sm) outperforms it by 9.3%, 2.1%, and 4.5% in these three metrics while also exhibiting superior parameter efficiency and higher inference speeds. The YOLOv7(sr‐sm) model architecture can accurately locate and identify blurry animal targets in vehicle‐mounted monitoring images, serving as a reliable tool for animal identification and counting in mobile monitoring systems. These findings provide significant technological support for the application of intelligent monitoring techniques in biodiversity conservation efforts.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"9 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.70003","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of artificial intelligence (AI) technologies, vehicle‐mounted mobile monitoring systems have become increasingly integrated into wildlife monitoring practices. However, images captured through these systems often present challenges such as low resolution, small target sizes, and partial occlusions. Consequently, detecting animal targets using conventional deep‐learning networks is challenging. To address these challenges, this paper presents an enhanced YOLOv7 model, referred to as YOLOv7(sr‐sm), which incorporates a super‐resolution (SR) reconstruction module and a small object optimization module. The YOLOv7(sr‐sm) model introduces a super‐resolution reconstruction module that leverages generative adversarial networks (GANs) to reconstruct high‐resolution details from blurry animal images. Additionally, an attention mechanism is integrated into the Neck and Head of YOLOv7 to form a small object optimization module, which enhances the model's ability to detect and locate densely packed small targets. Using a vehicle‐mounted mobile monitoring system, images of four wildlife taxa—sheep, birds, deer, and antelope —were captured on the Tibetan Plateau. These images were combined with publicly available high‐resolution wildlife photographs to create a wildlife test dataset. Experiments were conducted on this dataset, comparing the YOLOv7(sr‐sm) model with eight popular object detection models. The results demonstrate significant improvements in precision, recall, and mean Average Precision (mAP), with YOLOv7(sr‐sm) achieving 93.9%, 92.1%, and 92.3%, respectively. Furthermore, compared to the newly released YOLOv8l model, YOLOv7(sr‐sm) outperforms it by 9.3%, 2.1%, and 4.5% in these three metrics while also exhibiting superior parameter efficiency and higher inference speeds. The YOLOv7(sr‐sm) model architecture can accurately locate and identify blurry animal targets in vehicle‐mounted monitoring images, serving as a reliable tool for animal identification and counting in mobile monitoring systems. These findings provide significant technological support for the application of intelligent monitoring techniques in biodiversity conservation efforts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
期刊最新文献
How to achieve accurate wildlife detection by using vehicle‐mounted mobile monitoring images and deep learning? Bridging the gap in deep seafloor management: Ultra fine‐scale ecological habitat characterization of large seascapes Automated extraction of right whale morphometric data from drone aerial photographs Remotely sensing coral bleaching in the Red Sea Quantifying nocturnal bird migration using acoustics: opportunities and challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1