Active phase discovery in heterogeneous catalysis via topology-guided sampling and machine learning

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-03-14 DOI:10.1038/s41467-025-57824-4
Shisheng Zheng, Xi-Ming Zhang, Heng-Su Liu, Ge-Hao Liang, Si-Wang Zhang, Wentao Zhang, Bingxu Wang, Jingling Yang, Xian’an Jin, Feng Pan, Jian-Feng Li
{"title":"Active phase discovery in heterogeneous catalysis via topology-guided sampling and machine learning","authors":"Shisheng Zheng, Xi-Ming Zhang, Heng-Su Liu, Ge-Hao Liang, Si-Wang Zhang, Wentao Zhang, Bingxu Wang, Jingling Yang, Xian’an Jin, Feng Pan, Jian-Feng Li","doi":"10.1038/s41467-025-57824-4","DOIUrl":null,"url":null,"abstract":"<p>Understanding active phases across interfaces, interphases, and even within the bulk under varying external conditions and environmental species is critical for advancing heterogeneous catalysis. Describing these phases through computational models faces the challenges in the generation and calculation of a vast array of atomic configurations. Here, we present a framework for the automatic and efficient exploration of active phases. This approach utilizes a topology-based algorithm leveraging persistent homology to systematically sample configurations across diverse coordination environments and material morphologies. Simultaneously, efficient machine learning force fields enable rapid computations. We demonstrate the effectiveness of this framework in two systems: hydrogen absorption in Pd, where hydrogen penetrates subsurface layers and the bulk, inducing a “hex” reconstruction critical for CO<sub>2</sub> electroreduction, explored through 50,000 sampled configurations; and the oxidation dynamics of Pt clusters, where oxygen incorporation renders the clusters less active during oxygen reduction reactions, investigated through 100,000 sampled configurations. In both cases, the predicted active phases and their impacts on catalytic mechanisms closely align with previous experimental observations, indicating that the proposed strategy can model complex catalytic systems and discovery active phases under specific environmental conditions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"18 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57824-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding active phases across interfaces, interphases, and even within the bulk under varying external conditions and environmental species is critical for advancing heterogeneous catalysis. Describing these phases through computational models faces the challenges in the generation and calculation of a vast array of atomic configurations. Here, we present a framework for the automatic and efficient exploration of active phases. This approach utilizes a topology-based algorithm leveraging persistent homology to systematically sample configurations across diverse coordination environments and material morphologies. Simultaneously, efficient machine learning force fields enable rapid computations. We demonstrate the effectiveness of this framework in two systems: hydrogen absorption in Pd, where hydrogen penetrates subsurface layers and the bulk, inducing a “hex” reconstruction critical for CO2 electroreduction, explored through 50,000 sampled configurations; and the oxidation dynamics of Pt clusters, where oxygen incorporation renders the clusters less active during oxygen reduction reactions, investigated through 100,000 sampled configurations. In both cases, the predicted active phases and their impacts on catalytic mechanisms closely align with previous experimental observations, indicating that the proposed strategy can model complex catalytic systems and discovery active phases under specific environmental conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过拓扑引导采样和机器学习发现异相催化中的活性相位
了解不同外部条件和环境下的界面、界面甚至体内的活性相对于推进多相催化至关重要。通过计算模型描述这些阶段面临着生成和计算大量原子构型的挑战。在这里,我们提出了一个自动和有效地勘探活动阶段的框架。这种方法利用基于拓扑的算法,利用持久同源性,在不同的协调环境和材料形态中系统地采样配置。同时,高效的机器学习力场使快速计算成为可能。我们在两个系统中证明了该框架的有效性:Pd中的氢吸收,其中氢穿透亚表层和主体,诱导对CO2电还原至关重要的“六进制”重构,通过50,000个采样配置进行了探索;以及Pt团簇的氧化动力学,其中氧的掺入使团簇在氧还原反应中活性降低,通过100,000个采样配置进行了研究。在这两种情况下,预测的活性相及其对催化机制的影响与先前的实验观察结果密切相关,表明所提出的策略可以模拟复杂的催化体系并在特定的环境条件下发现活性相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Alleviating non-radiative losses in organic solar cells through side-chain regulation of low-bandgap non-fullerene acceptors. Regular-wrinkling tunable MXene lattice for electromagnetic interference shielding Integration of large vision language models for efficient post-disaster damage assessment and reporting Decoupling slab gliding and lattice contraction in Na layered oxides to enable high-voltage Na-ion batteries Structural basis for late maturation steps of mitochondrial respiratory chain complex IV within the human respirasome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1