Gang Zheng , Huimin Qiu , Tianqi Zhang , Huanyu Cheng , Yu Diao , Ke Wang
{"title":"Modelling ground and tunnel response to water-soil gushing in stratified soil","authors":"Gang Zheng , Huimin Qiu , Tianqi Zhang , Huanyu Cheng , Yu Diao , Ke Wang","doi":"10.1016/j.tust.2025.106583","DOIUrl":null,"url":null,"abstract":"<div><div>In silty (fine) sand aquifer, water-soil gushing (WSG) of shield tunnel may occur, causing structural damage and even collapse. A comprehensive understanding of the mechanism behind ground displacement and tunnel deformation during WSG in stratified soil was required for guiding disaster-relief in practice. In this article, the responses of ground and shield tunnel to WSG in stratified soil were investigated using a material-point method (MPM). First, a typical case of WSG in stratified soil was studied. By comparing the results with those of WSG in a homogeneous sand, both the ground and tunnel responses to WSG in a stratified soil were clarified. It was found that in stratified soil, the tunnel lining may deform first and then became stable, while in homogeneous sand, the tunnel deformation was shown to continuously develop with time due to unremitting soil loss. Then, the effects of the WSG locations, the sand layer position to tunnel, the layers number and permeability of clay and the discharge rate on WSG were further analyzed.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"161 ","pages":"Article 106583"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825002214","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In silty (fine) sand aquifer, water-soil gushing (WSG) of shield tunnel may occur, causing structural damage and even collapse. A comprehensive understanding of the mechanism behind ground displacement and tunnel deformation during WSG in stratified soil was required for guiding disaster-relief in practice. In this article, the responses of ground and shield tunnel to WSG in stratified soil were investigated using a material-point method (MPM). First, a typical case of WSG in stratified soil was studied. By comparing the results with those of WSG in a homogeneous sand, both the ground and tunnel responses to WSG in a stratified soil were clarified. It was found that in stratified soil, the tunnel lining may deform first and then became stable, while in homogeneous sand, the tunnel deformation was shown to continuously develop with time due to unremitting soil loss. Then, the effects of the WSG locations, the sand layer position to tunnel, the layers number and permeability of clay and the discharge rate on WSG were further analyzed.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.