Simultaneous topology, configuration, and prestress optimization for lightweight design of modular tensegrity chain structures

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL Thin-Walled Structures Pub Date : 2025-03-10 DOI:10.1016/j.tws.2025.113184
Yongcan Dong , Xingfei Yuan , Xin Wang , Akram Samy , Shuo Ma , Shilin Dong
{"title":"Simultaneous topology, configuration, and prestress optimization for lightweight design of modular tensegrity chain structures","authors":"Yongcan Dong ,&nbsp;Xingfei Yuan ,&nbsp;Xin Wang ,&nbsp;Akram Samy ,&nbsp;Shuo Ma ,&nbsp;Shilin Dong","doi":"10.1016/j.tws.2025.113184","DOIUrl":null,"url":null,"abstract":"<div><div>Lightweight design has emerged as a valuable research focus in tensegrity structures, gaining increasing attention across various engineering domains that prioritize weight reduction. While many existing studies have concentrated on the lightweight design of conventional tensegrity structures, relatively little attention has been paid to those derived from modular assembly. This study focuses on a specific type of modular tensegrity chain structure (TCS) and presents a comprehensive framework for its lightweight design. The proposed framework innovatively integrates three critical design aspects: prestress determination, configuration design, and topology optimization, while simultaneously accounting for various design constraints under both prestress and load states. This framework is formulated as a bilevel optimization model. Prestress optimization is first performed at the internal level and then incorporated into the external-level model for configuration design and topology optimization. Subsequently, improved hybrid algorithms are also introduced to solve the optimization problem. Three representative numerical examples are provided to validate the effectiveness of the proposed framework and solving algorithms. The results demonstrate that this comprehensive approach achieves significant mass reduction compared to single-aspect designs. The proposed framework offers a more holistic and efficient solution for lightweight TCS design, showcasing its potential for enhancing the performance and efficiency of modular tensegrity structures in engineering applications.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113184"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125002782","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight design has emerged as a valuable research focus in tensegrity structures, gaining increasing attention across various engineering domains that prioritize weight reduction. While many existing studies have concentrated on the lightweight design of conventional tensegrity structures, relatively little attention has been paid to those derived from modular assembly. This study focuses on a specific type of modular tensegrity chain structure (TCS) and presents a comprehensive framework for its lightweight design. The proposed framework innovatively integrates three critical design aspects: prestress determination, configuration design, and topology optimization, while simultaneously accounting for various design constraints under both prestress and load states. This framework is formulated as a bilevel optimization model. Prestress optimization is first performed at the internal level and then incorporated into the external-level model for configuration design and topology optimization. Subsequently, improved hybrid algorithms are also introduced to solve the optimization problem. Three representative numerical examples are provided to validate the effectiveness of the proposed framework and solving algorithms. The results demonstrate that this comprehensive approach achieves significant mass reduction compared to single-aspect designs. The proposed framework offers a more holistic and efficient solution for lightweight TCS design, showcasing its potential for enhancing the performance and efficiency of modular tensegrity structures in engineering applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
期刊最新文献
Collapse behavior and resistance mechanisms of steel modular buildings with corrugated walls: experimental, numerical, and analytical insights A deep learning approach to impact localization and uncertainty assessment in CFRP composites using sparse PZTs: Integrating experiments and simulations Simultaneous topology, configuration, and prestress optimization for lightweight design of modular tensegrity chain structures Experimental and numerical study on lateral-torsional buckling of welded QN1803 high-strength stainless steel I-girders Characterization of the debris clouds produced by hypervelocity oblique impact of spherical projectiles on honeycomb sandwich shields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1