{"title":"Numerical study on temperature and thermomechanical rolling contact fatigue of polygonised wheel during tread braking","authors":"Yifei Luo, Changwen Tan, Zhijun Zhou, Gongquan Tao, Zefeng Wen, Wenjian Wang","doi":"10.1016/j.engfailanal.2025.109526","DOIUrl":null,"url":null,"abstract":"<div><div>Wheel polygonization (polygonal wear) changes the wheel–rail contact and the wheel–brake shoe contact, which in turn changes the wheel temperature and the resulting rolling contact fatigue during tread braking. A simulation procedure based on the transient fully coupled thermomechanical finite element method is developed to investigate the response of the wheel material in the elastoplastic region, taking into account the synergistic effect of non-uniform thermal load and cyclic mechanical load due to wheel polygonization. The Dowling damage formula, Jiang–Sehitoglu fatigue model and Kapoor model are applied to investigate the rolling contact fatigue from the aspects of high cycle fatigue, low cycle fatigue and ratcheting failure, respectively. The temperature, stress–strain response, and fatigue pattern of a polygonised and a non-polygonised wheel during tread braking are compared. The simulation results show that wheel polygonization results in localized areas of low temperature at the troughs, while significantly higher temperature bands occur at the edges of contact hollows. Radial and circumferential compressive stresses and surface material flow increase as some stress–strain components tend to shakedown. Fatigue damage worsens especially at the polygonization crest, where the critical plane of crack initiation is more oblique to the axial direction and more towards the tread surface, while the ratcheting failure is attenuated. This research draws particular attention to polygonised wheels against excessive local temperature and rolling contact fatigue.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"174 ","pages":"Article 109526"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725002675","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wheel polygonization (polygonal wear) changes the wheel–rail contact and the wheel–brake shoe contact, which in turn changes the wheel temperature and the resulting rolling contact fatigue during tread braking. A simulation procedure based on the transient fully coupled thermomechanical finite element method is developed to investigate the response of the wheel material in the elastoplastic region, taking into account the synergistic effect of non-uniform thermal load and cyclic mechanical load due to wheel polygonization. The Dowling damage formula, Jiang–Sehitoglu fatigue model and Kapoor model are applied to investigate the rolling contact fatigue from the aspects of high cycle fatigue, low cycle fatigue and ratcheting failure, respectively. The temperature, stress–strain response, and fatigue pattern of a polygonised and a non-polygonised wheel during tread braking are compared. The simulation results show that wheel polygonization results in localized areas of low temperature at the troughs, while significantly higher temperature bands occur at the edges of contact hollows. Radial and circumferential compressive stresses and surface material flow increase as some stress–strain components tend to shakedown. Fatigue damage worsens especially at the polygonization crest, where the critical plane of crack initiation is more oblique to the axial direction and more towards the tread surface, while the ratcheting failure is attenuated. This research draws particular attention to polygonised wheels against excessive local temperature and rolling contact fatigue.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.