A synchronous data-driven hybrid framework for optimizing hydrotreating units and hydrogen networks under uncertainty

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2025-03-15 DOI:10.1016/j.compchemeng.2025.109050
Shizhao Chen , Xin Peng , Chenglin Chang , Zhi Li , Weimin Zhong
{"title":"A synchronous data-driven hybrid framework for optimizing hydrotreating units and hydrogen networks under uncertainty","authors":"Shizhao Chen ,&nbsp;Xin Peng ,&nbsp;Chenglin Chang ,&nbsp;Zhi Li ,&nbsp;Weimin Zhong","doi":"10.1016/j.compchemeng.2025.109050","DOIUrl":null,"url":null,"abstract":"<div><div>Minimizing hydrogen consumption while maintaining the production quality in the refinery is increasingly important with more usage of heavy crude oil. However, the uncertainty of the impurity content in the input flow has led to the optimal solution losing efficacy. Therefore, a synchronous optimization framework for the hydrogen network and the production system is proposed. In this work, the relationship between the production state and the hydrogen demand is characterized by a hybrid model. Besides, a Wasserstein distributionally robust optimization module is inserted into the optimization of the hydrogen network, considering the uncertain condition of the impurity content in the input flow. The results show that the balance of hydrogen consumption and production quality could be improved. a lower hydrogen demand, reduced energy consumption, and higher product profit could be achieved with a stabler production state.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109050"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000547","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Minimizing hydrogen consumption while maintaining the production quality in the refinery is increasingly important with more usage of heavy crude oil. However, the uncertainty of the impurity content in the input flow has led to the optimal solution losing efficacy. Therefore, a synchronous optimization framework for the hydrogen network and the production system is proposed. In this work, the relationship between the production state and the hydrogen demand is characterized by a hybrid model. Besides, a Wasserstein distributionally robust optimization module is inserted into the optimization of the hydrogen network, considering the uncertain condition of the impurity content in the input flow. The results show that the balance of hydrogen consumption and production quality could be improved. a lower hydrogen demand, reduced energy consumption, and higher product profit could be achieved with a stabler production state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不确定条件下优化加氢处理装置和氢气网络的同步数据驱动混合框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Advanced data-driven fault detection in gas-to-liquid plants A synchronous data-driven hybrid framework for optimizing hydrotreating units and hydrogen networks under uncertainty Editorial Board Predicting the temperature-dependent CMC of surfactant mixtures with graph neural networks Application of a temporal multiscale method for efficient simulation of degradation in PEM Water Electrolysis under dynamic operating conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1