F. Ongaro , P.H. Beoletto , F. Bosia , M. Miniaci , N.M. Pugno
{"title":"Closed-form solutions for wave propagation in hexagonal diatomic non-local lattices","authors":"F. Ongaro , P.H. Beoletto , F. Bosia , M. Miniaci , N.M. Pugno","doi":"10.1016/j.ijmecsci.2025.110095","DOIUrl":null,"url":null,"abstract":"<div><div>Periodic mass–spring lattices are commonly used to investigate the propagation of waves in elastic systems, including wave localisation and topological protection in phononic crystals and metamaterials. Recent studies have shown that introducing non-neighbouring (i.e., beyond nearest neighbour) connections in these chains leads to multiple topologically localised modes, while generating roton-like dispersion relations. This paper focuses on the theoretical analysis of elastic wave propagation in hexagonal diatom mass–spring systems in which both neighbouring and non-neighbouring interactions occur through linear elastic springs. Closed-form expression for the dispersion equations are derived, up to an arbitrary order of beyond-the-nearest connections for both in-plane and out-of-plane mass displacements. This allows to explicitly determine the influence of the order of non-neighbouring interactions on the band gaps, the local minima and the slope inversions in the first Brillouin zone for the considered unit cell. All analytical solutions are numerically verified. Finally, examples are provided on how non-neighbouring connections can be exploited to enhance the localisation of topologically-protected edge modes in waveguides constructed using mirror symmetric diatomic lattices constituted by two regions with different unit cell orientations. The study provides further insight on how to design phononic crystals generating roton-like behaviour and to exploit them for topologically protected waveguiding.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"291 ","pages":"Article 110095"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074032500181X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Periodic mass–spring lattices are commonly used to investigate the propagation of waves in elastic systems, including wave localisation and topological protection in phononic crystals and metamaterials. Recent studies have shown that introducing non-neighbouring (i.e., beyond nearest neighbour) connections in these chains leads to multiple topologically localised modes, while generating roton-like dispersion relations. This paper focuses on the theoretical analysis of elastic wave propagation in hexagonal diatom mass–spring systems in which both neighbouring and non-neighbouring interactions occur through linear elastic springs. Closed-form expression for the dispersion equations are derived, up to an arbitrary order of beyond-the-nearest connections for both in-plane and out-of-plane mass displacements. This allows to explicitly determine the influence of the order of non-neighbouring interactions on the band gaps, the local minima and the slope inversions in the first Brillouin zone for the considered unit cell. All analytical solutions are numerically verified. Finally, examples are provided on how non-neighbouring connections can be exploited to enhance the localisation of topologically-protected edge modes in waveguides constructed using mirror symmetric diatomic lattices constituted by two regions with different unit cell orientations. The study provides further insight on how to design phononic crystals generating roton-like behaviour and to exploit them for topologically protected waveguiding.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.