{"title":"Characterization of the debris clouds produced by hypervelocity oblique impact of spherical projectiles on honeycomb sandwich shields","authors":"Ying Chen , Qi-Guang He , Qun-Yi Tang , Lv-Tan Chen , Xiao-Wei Chen","doi":"10.1016/j.tws.2025.113192","DOIUrl":null,"url":null,"abstract":"<div><div>The protective capabilities of honeycomb sandwich shields are closely related to their unique core structure. When a projectile obliquely impacts the shield at hypervelocity, the radial multilayer foils can effectively break the projectile through multiple impacts, thereby reducing the impact momentum of the debris on the rear panel and absorbing the main impact energy. In this study, we employed the finite element-smooth particle hydrodynamics adaptive method to replicate experiments on the oblique hypervelocity impacts of spherical projectiles on homogeneous aluminum plates and honeycomb sandwich shields. Based on both the experimental and simulation results, we described the evolution of the debris cloud. In addition, we analyzed the distribution characteristics of the debris cloud and modeled the structural characteristics corresponding to the oblique impacts of spherical projectiles on different protective structures. We also analyzed how the honeycomb core influences the debris cloud during oblique impact to define the failure modes of the front and rear panels as well as the honeycomb core materials. Furthermore, we define the different stages in which damage occurs and examine the response processes for the honeycomb sandwich shields. These findings can serve as a reference for optimizing the design of protective structures.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113192"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125002861","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The protective capabilities of honeycomb sandwich shields are closely related to their unique core structure. When a projectile obliquely impacts the shield at hypervelocity, the radial multilayer foils can effectively break the projectile through multiple impacts, thereby reducing the impact momentum of the debris on the rear panel and absorbing the main impact energy. In this study, we employed the finite element-smooth particle hydrodynamics adaptive method to replicate experiments on the oblique hypervelocity impacts of spherical projectiles on homogeneous aluminum plates and honeycomb sandwich shields. Based on both the experimental and simulation results, we described the evolution of the debris cloud. In addition, we analyzed the distribution characteristics of the debris cloud and modeled the structural characteristics corresponding to the oblique impacts of spherical projectiles on different protective structures. We also analyzed how the honeycomb core influences the debris cloud during oblique impact to define the failure modes of the front and rear panels as well as the honeycomb core materials. Furthermore, we define the different stages in which damage occurs and examine the response processes for the honeycomb sandwich shields. These findings can serve as a reference for optimizing the design of protective structures.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.