Activating Wnt1/β-Catenin signaling pathway to restore Otx2 expression in the dopaminergic neurons of ventral midbrain

IF 4.6 2区 医学 Q1 NEUROSCIENCES Experimental Neurology Pub Date : 2025-03-13 DOI:10.1016/j.expneurol.2025.115216
Zhao Li , Jinhai Duan , AnQi Cao , Zhuo Gong , Hao Liu , Danyang Shen , Tonglin Ye , Shunyan Zhu , Qikai Cen , Shuaiying He , Yongqian He , Canbing Zheng , Xian Lin
{"title":"Activating Wnt1/β-Catenin signaling pathway to restore Otx2 expression in the dopaminergic neurons of ventral midbrain","authors":"Zhao Li ,&nbsp;Jinhai Duan ,&nbsp;AnQi Cao ,&nbsp;Zhuo Gong ,&nbsp;Hao Liu ,&nbsp;Danyang Shen ,&nbsp;Tonglin Ye ,&nbsp;Shunyan Zhu ,&nbsp;Qikai Cen ,&nbsp;Shuaiying He ,&nbsp;Yongqian He ,&nbsp;Canbing Zheng ,&nbsp;Xian Lin","doi":"10.1016/j.expneurol.2025.115216","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's disease (PD) is the world's second most prevalent neurodegenerative disease. Currently, aside from levodopa, there are no other effective drugs clinically available to slow its progression. Otx2 plays a critical role in the differentiation of midbrain dopaminergic neurons (mDANs) during midbrain development. However, in adulthood, Otx2 is primarily expressed in the ventral tegmental area (VTA)-ventral part, and mDANs in the dorsal part of the VTA and the substantia nigra pars compacta (SNc) show no Otx2 expression. Research indicates that Otx2 is essential not only for the development of mDANs but also for their protection against the toxicity of MPTP and rotenone. Consequently, Otx2 is a potential clinical target for mDANs protection. Identifying the upstream mechanism that regulates Otx2 expression is crucial to restoring its expression in the SNc and enhancing its levels in the entire ventral midbrain mDANs. In this study, we have demonstrated the safety of Otx2 overexpression in vitro by using adeno-associate virus (AAV) and explored the feasibility of promoting Otx2 expression through the Wnt/β-Catenin signaling pathway using various drugs, a miR-34 mimic, and an inhibitor. Our results showed that Otx2 overexpression via AAV in the SNc is relatively safe, and CHIR99021 can induce Otx2 expression in mouse mDANs, thereby, alleviating PD-liked motor symptoms induced by MPTP. These findings suggest that modulating Otx2 expression through the Wnt/β-Catenin signaling pathway holds a therapeutic approach for Parkinson's disease.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"388 ","pages":"Article 115216"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625000809","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is the world's second most prevalent neurodegenerative disease. Currently, aside from levodopa, there are no other effective drugs clinically available to slow its progression. Otx2 plays a critical role in the differentiation of midbrain dopaminergic neurons (mDANs) during midbrain development. However, in adulthood, Otx2 is primarily expressed in the ventral tegmental area (VTA)-ventral part, and mDANs in the dorsal part of the VTA and the substantia nigra pars compacta (SNc) show no Otx2 expression. Research indicates that Otx2 is essential not only for the development of mDANs but also for their protection against the toxicity of MPTP and rotenone. Consequently, Otx2 is a potential clinical target for mDANs protection. Identifying the upstream mechanism that regulates Otx2 expression is crucial to restoring its expression in the SNc and enhancing its levels in the entire ventral midbrain mDANs. In this study, we have demonstrated the safety of Otx2 overexpression in vitro by using adeno-associate virus (AAV) and explored the feasibility of promoting Otx2 expression through the Wnt/β-Catenin signaling pathway using various drugs, a miR-34 mimic, and an inhibitor. Our results showed that Otx2 overexpression via AAV in the SNc is relatively safe, and CHIR99021 can induce Otx2 expression in mouse mDANs, thereby, alleviating PD-liked motor symptoms induced by MPTP. These findings suggest that modulating Otx2 expression through the Wnt/β-Catenin signaling pathway holds a therapeutic approach for Parkinson's disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Neurology
Experimental Neurology 医学-神经科学
CiteScore
10.10
自引率
3.80%
发文量
258
审稿时长
42 days
期刊介绍: Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.
期刊最新文献
Guanine and isoguanine promote axon regeneration of dorsal root ganglion neurons and survival of retinal ganglion cells after injury PPM1D ameliorates Alzheimer's disease by promoting mitophagy. Editorial Board Activating Wnt1/β-Catenin signaling pathway to restore Otx2 expression in the dopaminergic neurons of ventral midbrain Effects of resistance exercise on behavioral and molecular changes in transgenic female mice for Alzheimer's disease in early and advanced stages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1