Optimization and Performance Evaluation of Macrophyte-Assisted Vermifiltration for Synthetic Dairy Wastewater: Investigating the Impact of Filter Bed Clogging and Hydraulic Retention Time on Organics Removal
{"title":"Optimization and Performance Evaluation of Macrophyte-Assisted Vermifiltration for Synthetic Dairy Wastewater: Investigating the Impact of Filter Bed Clogging and Hydraulic Retention Time on Organics Removal","authors":"K. Hasim Suhaib, Puspendu Bhunia","doi":"10.1007/s11270-025-07882-7","DOIUrl":null,"url":null,"abstract":"<div><p>Full factorial central composite design (CCD) and response surface methodology (RSM) were used to optimize and investigate the effects of major operational parameters such as organic strength, total suspended solids (TSS), and hydraulic loading rate (HLR) of the influent wastewater, which influenced the efficiency of organics (Chemical oxygen demand (COD)) removal from dairy wastewater using horizontal subsurface flow macrophyte-assisted vermifilter (HSSF-MAVF). The model obtained from RSM analysis was a quadratic polynomial model with a R<sup>2</sup> value of 0.99. The optimum condition for the maximum COD removal was obtained at organic strength of 2550 mg/L, TSS concentration of 950 mg/L, and HLR of 1 m<sup>3</sup>/m<sup>2</sup>/d. Furthermore, at optimum conditions, COD removal effectiveness of 92.3% was achieved against the predicted COD removal rate of 95.3%. Similarly, validation of the model with real dairy wastewater has given minimal error (2.8%) against the predicted COD removal efficiency. The research also investigated the impact of hydraulic retention time (HRT) on the vermifiltration and interactive effects of operational parameters on clogging and its impacts on the efficiency of organics removal. The findings demonstrated that vermifiltration at a higher value of operational and design parameters created severe clogging and ponding of wastewater in the filter bed and had a detrimental effect on the rates of organics removal. With the increase in HRT, the treatment performance of the vermifilter improved. Removal efficiencies for COD, TN, and TP were 29%, 7%, and 10% higher, respectively, at an HRT of 9.8 h compared to 2.7 h.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 4","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07882-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Full factorial central composite design (CCD) and response surface methodology (RSM) were used to optimize and investigate the effects of major operational parameters such as organic strength, total suspended solids (TSS), and hydraulic loading rate (HLR) of the influent wastewater, which influenced the efficiency of organics (Chemical oxygen demand (COD)) removal from dairy wastewater using horizontal subsurface flow macrophyte-assisted vermifilter (HSSF-MAVF). The model obtained from RSM analysis was a quadratic polynomial model with a R2 value of 0.99. The optimum condition for the maximum COD removal was obtained at organic strength of 2550 mg/L, TSS concentration of 950 mg/L, and HLR of 1 m3/m2/d. Furthermore, at optimum conditions, COD removal effectiveness of 92.3% was achieved against the predicted COD removal rate of 95.3%. Similarly, validation of the model with real dairy wastewater has given minimal error (2.8%) against the predicted COD removal efficiency. The research also investigated the impact of hydraulic retention time (HRT) on the vermifiltration and interactive effects of operational parameters on clogging and its impacts on the efficiency of organics removal. The findings demonstrated that vermifiltration at a higher value of operational and design parameters created severe clogging and ponding of wastewater in the filter bed and had a detrimental effect on the rates of organics removal. With the increase in HRT, the treatment performance of the vermifilter improved. Removal efficiencies for COD, TN, and TP were 29%, 7%, and 10% higher, respectively, at an HRT of 9.8 h compared to 2.7 h.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.