{"title":"Enhanced sensing via multipolarization reconfigurable Fano resonant graphene-dielectric metasurfaces at a fixed frequency","authors":"Zian Li , Rui Yang , Changhong Li","doi":"10.1016/j.optcom.2025.131689","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a hybrid graphene-dielectric metasurface that significantly advances biosensing through reconfigurable multipolarization enabled by Fano resonances. The metasurface, consisting of asymmetric silicon rods embedded in CaF<sub>2</sub> with a graphene layer, achieves two kinds of orthogonally polarized Fano resonances under linearly polarized electromagnetic wave interactions, generating four distinct polarized modes within a narrow bandwidth. The incorporation of graphene enables precise tuning of Fano resonant frequencies and facilitates switching between linear and circular polarization at a fixed frequency. This dual capability enhances the detection range and sensitivity of polarization sensing by enabling fixed-frequency multipolarization detection, thus allowing ultra-sensitive monitoring of polarization changes. Our approach contrasts with existing methods that utilize different frequencies for multipolarization, marking a significant advancement in the versatility and sensitivity of sensing technologies.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"583 ","pages":"Article 131689"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825002172","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a hybrid graphene-dielectric metasurface that significantly advances biosensing through reconfigurable multipolarization enabled by Fano resonances. The metasurface, consisting of asymmetric silicon rods embedded in CaF2 with a graphene layer, achieves two kinds of orthogonally polarized Fano resonances under linearly polarized electromagnetic wave interactions, generating four distinct polarized modes within a narrow bandwidth. The incorporation of graphene enables precise tuning of Fano resonant frequencies and facilitates switching between linear and circular polarization at a fixed frequency. This dual capability enhances the detection range and sensitivity of polarization sensing by enabling fixed-frequency multipolarization detection, thus allowing ultra-sensitive monitoring of polarization changes. Our approach contrasts with existing methods that utilize different frequencies for multipolarization, marking a significant advancement in the versatility and sensitivity of sensing technologies.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.