BERT-AmPEP60: A BERT-Based Transfer Learning Approach to Predict the Minimum Inhibitory Concentrations of Antimicrobial Peptides for Escherichia coli and Staphylococcus aureus.
Jianxiu Cai, Jielu Yan, Chonwai Un, Yapeng Wang, François-Xavier Campbell-Valois, Shirley W I Siu
{"title":"BERT-AmPEP60: A BERT-Based Transfer Learning Approach to Predict the Minimum Inhibitory Concentrations of Antimicrobial Peptides for <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>.","authors":"Jianxiu Cai, Jielu Yan, Chonwai Un, Yapeng Wang, François-Xavier Campbell-Valois, Shirley W I Siu","doi":"10.1021/acs.jcim.4c01749","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are a promising alternative for combating bacterial drug resistance. While current computer prediction models excel at binary classification of AMPs based on sequences, there is a lack of regression methods to accurately quantify AMP activity against specific bacteria, making the identification of highly potent AMPs a challenge. Here, we present a deep learning method, BERT-AmPEP60, based on the fine-tuned Bidirectional Encoder Representations from Transformers (BERT) architecture to extract embedding features from input sequences. Using the transfer learning strategy, we built regression models to predict the minimum inhibitory concentration (MIC) of peptides for <i>Escherichia coli</i> (EC) and <i>Staphylococcus aureus</i> (SA). In five independent experiments with 10% leave-out sequences as the test sets, the optimal EC and SA models outperformed the state-of-the-art regression method and traditional machine learning methods, achieving an average mean squared error of 0.2664 and 0.3032 (log μM), respectively. They also showed a Pearson correlation coefficient of 0.7955 and 0.7530, and a Kendall correlation coefficient of 0.5797 and 0.5222, respectively. Our models outperformed existing deep learning and machine learning methods that rely on conventional sequence features. This work underscores the effectiveness of utilizing BERT with transfer learning for training quantitative AMP prediction models specific for different bacterial species. The web server of BERT-AmPEP60 can be found at https://app.cbbio.online/ampep/home. To facilitate development, the program source codes are available at https://github.com/janecai0714/AMP_regression_EC_SA.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01749","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial peptides (AMPs) are a promising alternative for combating bacterial drug resistance. While current computer prediction models excel at binary classification of AMPs based on sequences, there is a lack of regression methods to accurately quantify AMP activity against specific bacteria, making the identification of highly potent AMPs a challenge. Here, we present a deep learning method, BERT-AmPEP60, based on the fine-tuned Bidirectional Encoder Representations from Transformers (BERT) architecture to extract embedding features from input sequences. Using the transfer learning strategy, we built regression models to predict the minimum inhibitory concentration (MIC) of peptides for Escherichia coli (EC) and Staphylococcus aureus (SA). In five independent experiments with 10% leave-out sequences as the test sets, the optimal EC and SA models outperformed the state-of-the-art regression method and traditional machine learning methods, achieving an average mean squared error of 0.2664 and 0.3032 (log μM), respectively. They also showed a Pearson correlation coefficient of 0.7955 and 0.7530, and a Kendall correlation coefficient of 0.5797 and 0.5222, respectively. Our models outperformed existing deep learning and machine learning methods that rely on conventional sequence features. This work underscores the effectiveness of utilizing BERT with transfer learning for training quantitative AMP prediction models specific for different bacterial species. The web server of BERT-AmPEP60 can be found at https://app.cbbio.online/ampep/home. To facilitate development, the program source codes are available at https://github.com/janecai0714/AMP_regression_EC_SA.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.