Enhancing Security in 5G NR With Channel-Robust RF Fingerprinting Leveraging SRS for Cross-Domain Stability

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2025-03-14 DOI:10.1109/TIFS.2025.3551638
Haoran Zha;Hanhong Wang;Yu Wang;Zhi Sun;Guan Gui;Yun Lin
{"title":"Enhancing Security in 5G NR With Channel-Robust RF Fingerprinting Leveraging SRS for Cross-Domain Stability","authors":"Haoran Zha;Hanhong Wang;Yu Wang;Zhi Sun;Guan Gui;Yun Lin","doi":"10.1109/TIFS.2025.3551638","DOIUrl":null,"url":null,"abstract":"Radio Frequency Fingerprinting (RFF) has emerged as a vital technique for enhancing Physical Layer Authentication (PLA) in New Radio (NR) networks. Unlike cryptographic methods, RFF leverages device-specific signal impairments to uniquely identify transmitters. Deep Learning (DL) advances have improved PLA, though challenges persist due to communication channel dynamics and device state changes. In this study, we propose a novel framework that integrates 5G NR protocol-specific structures and channel knowledge via SRS-based CSI to generate relative RFF features. Through a tailored frame design and carefully engineered processing pipeline, we achieve cross-domain stability and improved robustness against time-varying conditions. By applying regularization techniques (e.g., mixup) during training, our method further mitigates model overfitting and domain bias. Simulation and real-world SDR experiments, using data from 9 ADALM-PLUTO devices, validate the approach’s effectiveness. The proposed system attains recognition accuracies of 99.878%, 93.376%, 86.325%, and 66.558% in intra-domain, cross-channel, cross-time, and cross-scenario tests, respectively, highlighting its potential to substantially enhance physical layer security in NR-based networks.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"3429-3444"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10926510/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Radio Frequency Fingerprinting (RFF) has emerged as a vital technique for enhancing Physical Layer Authentication (PLA) in New Radio (NR) networks. Unlike cryptographic methods, RFF leverages device-specific signal impairments to uniquely identify transmitters. Deep Learning (DL) advances have improved PLA, though challenges persist due to communication channel dynamics and device state changes. In this study, we propose a novel framework that integrates 5G NR protocol-specific structures and channel knowledge via SRS-based CSI to generate relative RFF features. Through a tailored frame design and carefully engineered processing pipeline, we achieve cross-domain stability and improved robustness against time-varying conditions. By applying regularization techniques (e.g., mixup) during training, our method further mitigates model overfitting and domain bias. Simulation and real-world SDR experiments, using data from 9 ADALM-PLUTO devices, validate the approach’s effectiveness. The proposed system attains recognition accuracies of 99.878%, 93.376%, 86.325%, and 66.558% in intra-domain, cross-channel, cross-time, and cross-scenario tests, respectively, highlighting its potential to substantially enhance physical layer security in NR-based networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 SRS 实现跨域稳定性的信道稳健射频指纹技术增强 5G NR 的安全性
射频指纹技术(RFF)已成为新无线电(NR)网络中增强物理层认证(PLA)的一项重要技术。与加密方法不同,RFF利用特定于设备的信号损伤来唯一识别发射器。深度学习(DL)的进步已经改善了PLA,尽管由于通信通道动态和设备状态变化,挑战仍然存在。在本研究中,我们提出了一个新的框架,该框架通过基于rss的CSI集成5G NR协议特定结构和信道知识,以生成相对RFF特征。通过量身定制的框架设计和精心设计的处理管道,我们实现了跨域稳定性和改进的抗时变条件的鲁棒性。通过在训练期间应用正则化技术(例如,mixup),我们的方法进一步减轻了模型过拟合和域偏差。利用来自9个ADALM-PLUTO设备的数据进行仿真和实际SDR实验,验证了该方法的有效性。在域内、跨信道、跨时间和跨场景测试中,该系统的识别准确率分别达到99.878%、93.376%、86.325%和66.558%,显示出其在显著增强基于无线网络的物理层安全性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
A Comprehensive Framework for Palm Vein Anti-Spoofing with Preprocessing Pipeline, Dataset and Benchmark MsgFilter: Proactive Anti-Harassment Sender-Anonymous Messaging System Outsourced Cloud Storage and Dynamic Sharing: Efficient Time-Bound Access Control Secure Rational Delegation Federated Learning A Fast Jamming Strategy Optimization Method with Imperfect Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1