Structural analysis of hybrid composite arms for light weight robots

IF 4.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Engineering Failure Analysis Pub Date : 2025-03-12 DOI:10.1016/j.engfailanal.2025.109520
Manchi Nageswara Rao , Arockia Selvakumar Arockia Doss , Daniel Schilberg
{"title":"Structural analysis of hybrid composite arms for light weight robots","authors":"Manchi Nageswara Rao ,&nbsp;Arockia Selvakumar Arockia Doss ,&nbsp;Daniel Schilberg","doi":"10.1016/j.engfailanal.2025.109520","DOIUrl":null,"url":null,"abstract":"<div><div>Robot structures made of steel or aluminum tend to be heavy and can undergo significant deformation, which leads to increased power consumption and a higher risk of failure under load conditions. Therefore, it is essential to create lighter-weight structures without compromising the performance of the robot. Taguchi methods can be employed to design these lightweight robot structures and optimize their performance. Additionally, finite element analysis and machine learning can provide valuable insights into the behavior of these structures. A series of experiments have been designed and analyzed for hybrid composite tubes used in robotic arm applications, particularly focusing on fiber-reinforced polymer (FRP) materials wrapped around aluminum tubes. Filament winding is a well-known technique for applying FRP to tubes, and the primary approach in this investigation was analyzed using ANSYS Composite Pre/Postprocessor (ACP). The study investigates three models of hybrid composite pipes, varying the number of layers and the winding angle. Each model was subjected to cantilever loading at various node points, while keeping the wall thickness of the tube constant at 3 mm. The model with a CFRP winding angle of 45° and a layer thickness of 1.5 produced the best results compared to the others. It was observed that both the bending moment and shear stress of the tube increased with a rising winding angle, whereas the strain energy of the tube decreased with an increasing winding angle. The optimal winding angle was determined to be 45°. Additionally, the stresses on the filament-wound tubes under different load conditions were optimized, and a statistical analysis was conducted using Mini-Tab. The research further focused on identifying the maximum failure loading conditions for optimal parameters through composite failure analysis. The failure conditions of the composite tube under maximum sustainable parameters were compared with those of standard aluminum and CFRP tubes. The hybrid tube demonstrated less deformation and stress compared to the other models.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"174 ","pages":"Article 109520"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725002614","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Robot structures made of steel or aluminum tend to be heavy and can undergo significant deformation, which leads to increased power consumption and a higher risk of failure under load conditions. Therefore, it is essential to create lighter-weight structures without compromising the performance of the robot. Taguchi methods can be employed to design these lightweight robot structures and optimize their performance. Additionally, finite element analysis and machine learning can provide valuable insights into the behavior of these structures. A series of experiments have been designed and analyzed for hybrid composite tubes used in robotic arm applications, particularly focusing on fiber-reinforced polymer (FRP) materials wrapped around aluminum tubes. Filament winding is a well-known technique for applying FRP to tubes, and the primary approach in this investigation was analyzed using ANSYS Composite Pre/Postprocessor (ACP). The study investigates three models of hybrid composite pipes, varying the number of layers and the winding angle. Each model was subjected to cantilever loading at various node points, while keeping the wall thickness of the tube constant at 3 mm. The model with a CFRP winding angle of 45° and a layer thickness of 1.5 produced the best results compared to the others. It was observed that both the bending moment and shear stress of the tube increased with a rising winding angle, whereas the strain energy of the tube decreased with an increasing winding angle. The optimal winding angle was determined to be 45°. Additionally, the stresses on the filament-wound tubes under different load conditions were optimized, and a statistical analysis was conducted using Mini-Tab. The research further focused on identifying the maximum failure loading conditions for optimal parameters through composite failure analysis. The failure conditions of the composite tube under maximum sustainable parameters were compared with those of standard aluminum and CFRP tubes. The hybrid tube demonstrated less deformation and stress compared to the other models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Failure Analysis
Engineering Failure Analysis 工程技术-材料科学:表征与测试
CiteScore
7.70
自引率
20.00%
发文量
956
审稿时长
47 days
期刊介绍: Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies. Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials. Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged. Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.
期刊最新文献
Investigation into the initiation and evolution mechanism of rail weld irregularities due to wheel impacts in High-Speed railways Insights in the interaction between roughness reduction and fatigue crack growth in rolling contacts Bilateral wear analysis of crowned spline coupling subject to angular misalignment Study on the effect of static fissure on the stress field of anchored rock beam and axial force of bolt Failure analysis and on-line damage monitoring based on deep-learning for thermo-oxidative aged 3D angle-interlock woven composites under tension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1