A mathematical framework for maze solving using quantum walks

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2025-03-17 DOI:10.1007/s11128-025-04711-y
Leo Matsuoka, Hiromichi Ohno, Etsuo Segawa
{"title":"A mathematical framework for maze solving using quantum walks","authors":"Leo Matsuoka,&nbsp;Hiromichi Ohno,&nbsp;Etsuo Segawa","doi":"10.1007/s11128-025-04711-y","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a mathematical framework for identifying the shortest path in a maze using a Grover walk, which becomes non-unitary by introducing absorbing holes. In this study, we define the maze as a network with vertices connected by unweighted edges. Our analysis of the stationary state of the truncated Grover walk on finite graphs, where we strategically place absorbing holes and self-loops on specific vertices, demonstrates that this approach can effectively solve mazes. By setting arbitrary start and goal vertices in the underlying graph, we obtain the following long-time results: (i) in tree structures, the probability amplitude is concentrated exclusively along the shortest path between start and goal; (ii) in ladder-like structures with additional paths, the probability amplitude is maximized near the shortest path.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04711-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04711-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a mathematical framework for identifying the shortest path in a maze using a Grover walk, which becomes non-unitary by introducing absorbing holes. In this study, we define the maze as a network with vertices connected by unweighted edges. Our analysis of the stationary state of the truncated Grover walk on finite graphs, where we strategically place absorbing holes and self-loops on specific vertices, demonstrates that this approach can effectively solve mazes. By setting arbitrary start and goal vertices in the underlying graph, we obtain the following long-time results: (i) in tree structures, the probability amplitude is concentrated exclusively along the shortest path between start and goal; (ii) in ladder-like structures with additional paths, the probability amplitude is maximized near the shortest path.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们提供了一个数学框架,利用格罗弗行走法确定迷宫中的最短路径,而格罗弗行走法通过引入吸收孔变得非单一。在这项研究中,我们将迷宫定义为由无权边连接顶点的网络。我们在有限图上对截断格罗弗行走的静止状态进行了分析,并策略性地在特定顶点上放置了吸收孔和自循环,结果表明这种方法可以有效地解决迷宫问题。通过在底层图中设置任意的起点和目标顶点,我们得到了以下长期结果:(i) 在树状结构中,概率振幅完全集中在起点和目标之间的最短路径上;(ii) 在具有额外路径的梯状结构中,概率振幅在最短路径附近达到最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
Extension of a pattern recognition validation approach for noisy boson sampling A mathematical framework for maze solving using quantum walks Multipartite entanglement based on realignment moments Probabilistic quantum cloning of three equidistant states Improving the performance of practical reference-frame-independent quantum key distribution under the afterpulse effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1